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Abstract— We consider the problem of carrier frequency recov-
ery for linearly, digitally modulated signals. Presented algorithm
can be applied before modulation classification and/or demodu-
lation of the M-ary PSK and M-ary QAM signals. It is based on
the properties of the Renyi’s entropy of the instantaneous phase
probability density function, and uses the fact that it reaches
minimum when the receiver is fine-tuned to unknown carrier
frequency. This estimator is applicable to algorithms requiring
high accuracy without a priori knowledge concerning modulation
scheme, signal contents nor its timing parameters.

I. I NTRODUCTION

For at last two decades, automatic modulation recognition
[1]–[6] is a topic of interest for the scientific community
working on both military and commercial communication sys-
tems. Performance and complexity of these algorithms depend
on the number of unknown parameters in the intercepted
transmission. One of the most important signal features is its
carrier frequency, since it allows to stabilize the constellation
of a signal and then to recognize underlying modulation type.

Most of the published papers in the field of carrier recovery
deal with the cases where some signal parameters are known.
In [7], authors obtained their estimator in case where training
bits and symbol timing are known. Similar assumptions were
made in [8], where perfect symbol synchronization, no inter-
symbol interferences (ISI), and known symbol rate were taken
into considerations. Low estimator’s variance was observed
in a two-step approach proposed in [9], where the estimators
of unknown channel characteristics and frequency offset are
based on the information provided by the second or fourth-
order cyclostationary (CS) statistics. In [10], authors presented
Data-Aided (DA) Maximum Likelihood (ML) estimator which
performance is close to the Modified Cramér-Rao Bound
(MCRB) for low Signal to Noise Ratio (SNR) and when data
sequence is known. They compared their method to standard
ML algorithms proposed by Kay [11] and Fitz [12].

In this paper we propose a Non-Data-Aided (NDA), asyn-
chronous approach, i.e. there is no preamble sequence avail-
able nor prior knowledge concerning the data-stream and
timings. In the following sections, we assume the signal
to be MPSK or MQAM without any additional information
concerning the number of states, initial carrier phase, northe
transmission baud rate.

II. SIGNAL MODEL

Let us assume that the received complex signal can be
expressed as a sum of two uncorrelated components

r(t) = Ax(t)ej(ωct+Θc) + z(t) (1)

where x(t) is a signal complex envelope,A is a carrier
amplitude,ωc is a carrier frequency,Θc is a carrier phase, and
z(t) corresponds to a complex, zero mean, Additive White
Gaussian Noise (AWGN).

Using the concept of the complex envelope, one can express
any linearly modulated signal as

x(t) =

K∑

k=1

dkh(t− kT ) (2)

whereK denotes the number of observed symbols,T is a
symbol duration,h(t) is a pulse shaping function, anddk
describe constellation of a signal

dMPSK
k = ejϕk , dMQAM

k = ak + jbk (3)

ϕk ∈ { 2π
M (m− 1) : m = 1, 2, . . . , M} (4)

ak, bk ∈ {±(2m− 1) : m = 1, 2, . . . , log2(M) − 2} (5)

Without loss of generality, we assume that all modulation
states (ϕk, ak, bk) are equiprobable and the pulse shaping
functionh(t) is rectangular (orx(t) is the output of a matched
filter h∗(−t)).

III. I NSTANTANEOUSPHASE PROBABILITY DENSITY

FUNCTION

By substitutingx(t) = 1 in (1), one can obtain an analytic
form of a Carrier Wave (CW) signal. Ifωc andΘc are exactly
known, then after complex mixing with a local oscillator
e−j(ωLOt+ΘLO) (ωLO = ωc, ΘLO = Θc) one obtains a complex
baseband signal, which probability density function (PDF)of
its instantaneous phaseψ (IP) may be written as in [13]

pcw(ψ; γ) =
e−γ

2π
+

e−γ

2

√
γ

π
cos (ψ)eγ cos2(ψ)

· {1 + erf [
√
γ cos(ψ)]} , ψ ∈ [−π, π[

(6)

or in terms of a Fourier series ([14], [15]) as

pcw(ψ; γ) =
1

2π

[
1 +

∞∑

l=1

αl(γ) cos (lψ)

]
(7)
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with the Fourier series coefficients

αl(γ) =
√
πγ e−

γ
2

[
I l−1

2

(γ
2

)
+ I l+1

2

(γ
2

)]
(8)

where erf(x) , 2√
π

∫ x
0 e−t

2

dt is an error function,σ2
z is a

noise variance,γ = A2

2σ2
z

= 10SNR/10, andIl(x) is the modified
Bessel function of orderl.

When carrier frequencyωc is unknown, one can write
resulting PDF as a function of timet and frequency error
∆ω = ωc − ωLO as

p∆ω
cw (ψ, t; γ) = pcw (ψ + ∆ωt; γ) (9)

Finally, an asymptotic distribution of IP during observation
periodTo can be expressed as

pTo
cw(ψ; γ) =

1

To

∫ To/2

−To/2

p∆ω
cw (ψ, t; γ) dt (10)

and using (7) and (10), it is straightforward to write

pTo
cw(ψ; γ) =

1

2π

[
1 +

∞∑

l=1

sin( l∆ωTo
2 )

l∆ωTo
2

αl(γ) cos (lψ)

]
(11)

In the general case of MPSK and MQAM constellations,
and initial phase errors∆Θ = Θc − ΘLO, one can write
resulting PDF as

p(ψ) =
1

M

M∑

k=1

pTo
cw

(
ψ + arg{dk} + ∆Θ; γ|dk|2

)
(12)

IV. RENYI ’ S ENTROPY AND OBJECTIVE FUNCTION

The entropy of a random variableX is a quantitative
measure of the randomness of the corresponding experiment.
The most known definitions are the Shannon’s entropy [16]

HS = −
∫ +∞

−∞

p(x) log [p(x)] dx (13)

and the Renyi’s entropy [17]

Hα
R =

1

1 − α
log

[∫ +∞

−∞

pα(x) dx

]
, α > 0, α 6= 1 (14)

It is known that

lim
α→1

Hα
R = HS, Hβ

R > HS > Hγ
R (15)

for 0 < β < 1 and 1 < γ, so, Shannon’s entropy can be
viewed as a member of Renyi’s entropy family [18]. When
α = 2, Renyi’s entropyH2

R is also called quadratic entropy

HQ = − log

[∫ +∞

−∞

p2(x) dx

]
(16)

Using the relations (11), (16), and the orthogonality of a
Fourier series expansion in the range[−π, π[

∫ +π

−π

(∑+∞
i=0 ai cos(it)

)2

dt = π
(
2a2

0 +
∑+∞

i=1 a
2
i

)
(17)

the quadratic entropy of the IP PDF can be expressed as

Hcw
Q = − log

[
1

2π

(
1 +

1

2

+∞∑

l=1

Sinc
(
l∆ωTo

2

)2
α2(γ)

)]
(18)

where Sinc(x) , sin(x)/x. For the MPSK and MQAM
signals, corresponding quadratic entropies can be found via
the equations (11), (12) and (16).

It is evident thatHcw
Q in (18) reaches its global minimum

when∆ωTo = 0, so the carrier synchronization can be viewed
as the minimum searching

ω̂c = min
ω

[HQ] (19)

and equally as
ω̂c = min

ω
[Q] (20)

where the objective functionQ is defined as

Q ,

[∫ +∞

−∞

p2(x) dx

]−1

(21)

To provide an insight how the objective functionQ changes
for different signals, numerical integration was conducted and
the corresponding results (for CW, BPSK, QPSK, 16QAM,
and 32QAM) are presented in the figures 1 (as a function of
∆ωTo) and 2 (as a function of SNR).
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Fig. 1. Objective functionQ for different frequencies

It is worth noticing, that both quadratic entropyHQ, and
the objective functionQ depend only on the shape of the IP
PDF. Neither the amplitude of the received signal nor its initial
carrier and local oscillator phases do not affect these values.

V. A LGORITHM DESCRIPTION

The algorithm can be decomposed on two main parts: a raw
estimation, and a fine-tuning part. The aim of the first part isto
provide the approximate value of the carrier frequency around
which, ”the fine-tuning part” can search for the minimum value
of the objective functionQ.

First of all, the algorithm estimates the Power Spectral
Density (PSD) of a signal by using Welch [19] modified
periodogram method. Next, an heuristic threshold is applied
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Fig. 2. Objective functionQ for different SNR

to the PSD to extract only the meaningful part of the signal
spectrum. Finally, the mean value of the extracted part is
calculated. This value is used as the raw carrier frequency
estimator around which the Frequency Raster is constructed
(the surroundings of the mean frequency).

The fine-tuning part is implemented as a downconversion
with the frequencies chosen from the Frequency Raster. Re-
sulting baseband signal samples are used to extract the IP PDF
and calculateQ. Finally, the minimum searching algorithm is
applied to find the minimum value.

One has to pay attention on two topics: the minimum
searching algorithm and the computational complexity. The
fact that we did not assumed any a priori knowledge con-
cerning the location of the true carrier frequency, causes the
necessity of applying the ”raw estimation part”. The quality
of this estimator is limited by the resolution of the PSD and
to overcome this limit, it is necessary to make the Frequency
Raster adequately large (large neighborhood and large number
of frequencies). This implicates that there is a sharp peak in
the Frequency Raster (corresponding to the minimal entropy),
and the rest of it is almost constant. Such a minimum is hard to
find using classical gradient techniques, and as a consequence,
on has to apply the linear search algorithm instead of more
efficient ones. To sum up, the errors due to first part of the
method increase the size of the Frequency Raster what makes
the application of any gradient techniques impossible and the
computational complexity important. The methods of reducing
the influence on performance of these factors are currently
examined.

VI. EXPERIMENTAL RESULTS

The performance of the proposed carrier frequency estima-
tion algorithm was assessed by computer simulations using
the following scenario: CW, BPSK, QPSK, 16QAM, and
32QAM modulation types; 5 and 10 samples per symbol, 100
and 400 symbols in the signal; 1000 trials for each signal,
source signals were modeled as uniformly distributed on all
constellation states; additive noise was modeled as Gaussian;

SNR was varying from 0 to 30 dB with the step of 2 dB;
sampling frequencyFs was equal 8 kHz.

The experimental results have proved that the proposed
estimator is unbiased and independent of the baud rate (num-
ber of samples per symbol) for all signals. Variances of the
normalized frequency error

Var(δω) = Var

(
ω̂c − ωc

2πFs

)
(22)

for all signals and different SNR values are presented in the
figures 3 (100 symbols, 5 samples per symbol) and 4 (400
symbols, 10 samples per symbol).
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Fig. 3. Experimental results I
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Fig. 4. Experimental results II

VII. C ONCLUSION

Our new algorithm can be applied for a whole branch of
digital transmissions – it estimates the mean frequency of
the signal spectrum (raw estimation part), and in the case
of the linearly, digitally modulated signals as MPSK and
MQAM – it estimates the corresponding carrier frequency. It
is independent of the initial carrier and local oscillator phases,
as well as timings. The a priori knowledge of the constellation
shape or number of characteristic states is not necessary for
correct estimation of the carrier frequency (providing that SNR
is big enough).
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Increasing the number of available symbols and the number
of samples per symbol, greatly improve performance of the
method – for almost all of the signals the gain is≈ 6 dB
for the correct estimation of carrier frequency, and the final
relative variance Var[δω] improves almost 1000 times.

Further work will be conducted to improve the quality of
the ”raw estimator” (e.g. using a Yule-Walker AR modeling
to estimate the PSD), ”fine-tuning part” (e.g. two or more
Frequency Rasters), as well as the computational overhead.
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