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Abstract— We consider the problem of carrier frequency recov- Il. SIGNAL MODEL
ery for linearly, digitally modulated signals. Presented dgorithm . .
can be applied before modulation classification and/or denttu- Let us assume that the received complex signal can be

lation of the M-ary PSK and M-ary QAM signals. It is based on expressed as a sum of two uncorrelated components

the properties of the Renyi’s entropy of the instantaneous pase ) o

probability density function, and uses the fact that it reahes r(t) = Az(t)e/@t+9) 4 2 (¢) Q)

minimum when the receiver is fine-tuned to unknown carrier _ ) _ _

frequency. This estimator is applicable to algorithms requiring where z(t) is a signal complex enveloped is a carrier

high accuracy without a priori knowledge concerning moduldion  amplitudew, is a carrier frequency. is a carrier phase, and

scheme, signal contents nor its timing parameters. z(t) corresponds to a complex, zero mean, Additive White
Gaussian Noise (AWGN).

Using the concept of the complex envelope, one can express

I. INTRODUCTION any linearly modulated signal as
K
For at last two decades, automatic modulation recognition x(t) = deh(t — kT) (2)
k=1

[1]-[6] is a topic of interest for the scientific community

working on both military and commercial communication sysvhere K denotes the number of observed symbdlsjs a
tems. Performance and complexity of these algorithms dipesymbol duration,h(t) is a pulse shaping function, and,
on the number of unknown parameters in the intercepteddscribe constellation of a signal

transmission. One of the most important signal featuretsis i

. . . - . MPSK __ MQAM )
carrier frequency, since it allows to stabilize the conatign di =P dy = ak + jb 3)
of a signal and then to recognize underlying modulation type  ¢x € {32 (m —1): m=1,2, ..., M} 4)

Most of the published papers in the field of carrier recovery ay, b, € {x(2m —1): m =1, 2, ..., log,(M) —2} (5)

deal with the cases where some signal parameters are know, . .
: . i . N~ ithout loss of generality, we assume that all modulation

In [7], authors obtained their estimator in case where ingin ; :
tates Oy, ax, br) are equiprobable and the pulse shaping

bits and symbol timing are known. Similar assumptions wefe ~ . .
made in [8], where perfect symbol synchronization, no mte%tl?f"n(li(f)))ls rectangular (ox:(t) is the output of a matched
symbol interferences (ISI), and known symbol rate wereniake '

into considerations. Low estimator’s variance was observe
in a two-step approach proposed in [9], where the estimators
of unknown channel characteristics and frequency offset ar
based on the information provided by the second or fourth-BY substitutingz(¢) = 1 in (1), one can obtain an analytic
order cyclostationary (CS) statistics. In [10], authorssented form of a Carrier Wave (CW) signal. lb. and©. are exactly
Data-Aided (DA) Maximum Likelihood (ML) estimator which known, then after complex mixing with a local oscillator
performance is close to the Modified Cramér-Rao Bourfd” ") (wio = we, OLo = Oc) one obtains a complex
(MCRB) for low Signal to Noise Ratio (SNR) and when dat®aseband signal, which probability density function (PF)
sequence is known. They compared their method to standifdinstantaneous phage(IP) may be written as in [13]

ML algorithms proposed by Kay [11] and Fitz [12].

. | NSTANTANEOUSPHASE PROBABILITY DENSITY
FUNCTION

e’ e’ /v c0s? (¢
hIn this paper wehp_ropoie a Non—Data—Aig:ed (NDA), asyn—_I Pow(¥; 7) = o T g\ o8 ()7 e ) (6)
chronous approach, i.e. there is no preamble sequence avai {1 +erf[yFeos(®)]}, ¥ € [~

able nor prior knowledge concerning the data-stream and
timings. In the following sections, we assume the signar in terms of a Fourier series ([14], [15]) as
to be MPSK or MQAM without any additional information
concerning the number of states, initial carrier phase,ther

1
. pew(t); 7) = o=
transmission baud rate. W o

1+ au(y)cos <lw>] 7
=1
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with the Fourier series coefficients the quadratic entropy of the IP PDF can be expressed as

_ 2 Y Y +o00
— 2 T - 1 1 .
ar(y) = ymy e {I% (2) +lg (2)} @) pow —log l% <1 +5 > Smc(%)%ﬁ(v))] (18)
where erfr) £ %foz e~t’dt is an error functiong? is a =t

noise variancey = £ = 10SN®/10, and[;(x) is the modified
Bessel function of ordet.

When carrier frequencyo; is unknown, one can write
resulting PDF as a function of timé and frequency error

Aw = W¢ — WLO as

where Sin¢r) £ sin(z)/z. For the MPSK and MQAM
signals, corresponding quadratic entropies can be fouad vi
the equations (11), (12) and (16).

It is evident thatH/g" in (18) reaches its global minimum
whenA,T, = 0, so the carrier synchronization can be viewed
as the minimum searching

Paw’ (Ut ) = pow (1 + Aut; ) 9) B = min[Ho) (19)
Finally, an asymptotic distribution of IP during obsereati .4 equally as
periodT, can be expressed as e = min[Q)] (20)
1 To/2 L . w .
plo (s ) = ?/ PR (1, t; ) dt (10) Where the objective functio is defined as
0J-T,/2 +o0 -1
and using (7) and (10), it is straightforward to write Q= [/ PP (x) dl”} (21)

> sin(2eTo) To provide an insight how the objective functighchanges
Pou(¥; 7) = Gy [1 +2 ) eos ()| (D) gor gifferent signals, numerical integration was conddaed
=1 2 the corresponding results (for CW, BPSK, QPSK, 16QAM,
In the general case of MPSK and MQAM constellationand 32QAM) are presented in the figures 1 (as a function of
and initial phase errord\¢ = O — OO0, One can write A,T,) and 2 (as a function of SNR).
resulting PDF as

| M SNR =20 dB
p(W) = 52> vew (U +argdi} + Ae: yldi[*)  (12)
k=1 6 = —_—— 7 T T
7 R ety ~ = -
IV. RENYI'S ENTROPY AND OBJECTIVE FUNCTION ,’ v
The entropy of a random variabl& is a quantitative 4 ’/I ; ,"/
measure of the randomness of the corresponding experiment. & R
The most known definitions are the Shannon’s entropy [16] Y — 32QAM
ol — - 160AM
teo R .+ QPSK
Hs=— [ p(x)log[p(z)] dx (13) S = BPSK
—oo / —_ CW
and the Renyi's entropy [17] 00 /2 - 37/2 o
|ALTo| [rad]

Hg = 1 log [/+Oopo‘(x) dx],a >0,a#1 (14)

l-a -0 Fig. 1. Objective functior) for different frequencies

It is known that ) o )
It is worth noticing, that both quadratic entro@y, and
513311 HS = Hs, HE > Hs> H} (15) the objective function)) depend only on the shape of the IP
PDF. Neither the amplitude of the received signal nor itgahi

for 0 < § < 1andl < v, so, Shannon's entropy can bearrier and local oscillator phases do not affect theseegalu
viewed as a member of Renyi’s entropy family [18]. When

a = 2, Renyi’'s entropyH3 is also called quadratic entropy V. ALGORITHM DESCRIPTION
oo The algorithm can be decomposed on two main parts: a raw
Hg = —log {/ P2 (x) da:] (16) estimation, and a fine-tuning part. The aim of the first patdis
—o0 provide the approximate value of the carrier frequency adou

Using the relations (11), (16), and the orthogonality of which, "the fine-tuning part” can search for the minimum \alu

Fourier series expansion in the ranger, | of the objective functior@).

First of all, the algorithm estimates the Power Spectral
Density (PSD) of a signal by using Welch [19] modified
periodogram method. Next, an heuristic threshold is agplie

/_-:T( =a cos(it))zdt =7 (2a(2) + 3 a?) (17)
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SNR was varying from 0 to 30 dB with the step of 2 dB;
sampling frequencys was equal 8 kHz.

The experimental results have proved that the proposed
estimator is unbiased and independent of the baud rate (num-
ber of samples per symbol) for all signals. Variances of the
normalized frequency error

We — We
Var(é,,) = Var< onF )
for all signals and different SNR values are presented in the
figures 3 (100 symbols, 5 samples per symbol) and 4 (400
‘ ‘ ‘ — symbols, 10 samples per symbol).
0 ) 10 15 20 25 30
SNR [dB]

(22)

10~4

100 symb., 5 sampl./symb.

Fig. 2. Objective functior) for different SNR
10~

to the PSD to extract only the meaningful part of the signal e 1078
spectrum. Finally, the mean value of the extracted part is =
calculated. This value is used as the raw carrier frequency  >107'{[—cw
estimator around which the Frequency Raster is constructed Ll %ng(
(the surroundings of the mean frequency). 10 - - 16QAM

The fine-tuning part is implemented as a downconversion 10-14 — 32Q0AM

with the frequencies chosen from the Frequency Raster. Re- 0 5 10 15 20 25 30
sulting baseband signal samples are used to extract the P PD SNR [dB]
and calculat&). Finally, the minimum searching algorithm is
applied to find the minimum value.

One has to pay attention on two topics: the minimum
searching algorithm and the computational complexity. The

Fig. 3. Experimental results |

fact that we did not assumed any a priori knowledge con-
cerning the location of the true carrier frequency, caukes t
necessity of applying the "raw estimation part”. The qualit
of this estimator is limited by the resolution of the PSD and
to overcome this limit, it is necessary to make the Frequency
Raster adequately large (large neighborhood and large @umb
of frequencies). This implicates that there is a sharp peak i
the Frequency Raster (corresponding to the minimal enjropy
and the rest of it is almost constant. Such a minimum is hard to
find using classical gradient techniques, and as a conseguen
on has to apply the linear search algorithm instead of more
efficient ones. To sum up, the errors due to first part of the
method increase the size of the Frequency Raster what makes
the application of any gradient techniques impossible &ed t
computational complexity important. The methods of redgci
the influence on performance of these factors are currently
examined.

400 symb., 10 sampl./symb.

—CW
.—. BPSK
... QPSK
- - 16QAM
— 32QAM

0 5 1 25 30

0 15 20
SNR [dB]

Fig. 4. Experimental results I|

VIl. CONCLUSION

Our new algorithm can be applied for a whole branch of

digital transmissions — it estimates the mean frequency of
the signal spectrum (raw estimation part), and in the case

The performance of the proposed carrier frequency estin@f- the linearly, digitally modulated signals as MPSK and
tion algorithm was assessed by computer simulations usiWQAM — it estimates the corresponding carrier frequency. It
the following scenario: CW, BPSK, QPSK, 16QAM, ands independent of the initial carrier and local oscillatbiapes,
32QAM modulation types; 5 and 10 samples per symbol, 1@8 well as timings. The a priori knowledge of the constedlati
and 400 symbols in the signal; 1000 trials for each signahape or number of characteristic states is not necessary fo
source signals were modeled as uniformly distributed on albrrect estimation of the carrier frequency (providing tBaIR
constellation states; additive noise was modeled as Gauyssis big enough).

VI. EXPERIMENTAL RESULTS
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Increasing the number of available symbols and the number
of samples per symbol, greatly improve performance of the
method — for almost all of the signals the gain~s6 dB
for the correct estimation of carrier frequency, and thelfina
relative variance Vaé,,] improves almost 1000 times.

Further work will be conducted to improve the quality of
the "raw estimator” (e.g. using a Yule-Walker AR modeling
to estimate the PSD), "fine-tuning part” (e.g. two or more
Frequency Rasters), as well as the computational overhead.
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