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Abstract— Modulation classification is considered significant 
in Communication Intelligence (COMINT) applications such as 
signal interception for defence, civil authority, and surveillance. 
It is also key for threat analysis. Recently many algorithms have 
been proposed to distinguish digitally modulated signals. In this 
paper, we present and evaluate some problems related to 
automatic recognition of the type of modulated signals. First of 
all, Azzouz and Nandi’s algorithm has been compared and 
discussed. As the work is an initial study, only some classical 
digital modulations have been considered.  Many simulations 
have been carried out and presented for these modulation types 
by using statistical approaches. Different segments of samples 
have been considered. Finally, the results have been compared 
using different windows like Hamming, Gaussian, Bartlett, etc. 

I. INTRODUCTION 
Automatic modulation recognition can be used in many 

civil as well as military applications such as electronic warfare, 
electronic support measure, spectrum surveillance and 
management, identification of non license transmitters, etc [1]. 
Modulation types are considered as the signal signature in the 
field of COMmunication INTelligence (COMINT) [2]. When 
modulation type is identified, an appropriate demodulator can 
demodulate the signal to recover the information [2]. 
Therefore, modulation recognition is an indispensable 
essential step to retrieve the exact transmitted signal. 

Intercepted communication signals have a high degree of 
uncertainty due to unidentified modulation types and noise. 
Therefore, many modulation classification algorithms have 
been established based on statistical methods [3], [4]. The 
features of the intercepted modulated signals, such as carrier 
frequency, can be derived from the known statistical 
characteristics of the signal. Higher order statistics has been 
studied previously in many communication applications [4], 
[5]. The higher order statistics are more preferable because 
second order statistics suppress the phase information of the 
signal [6]. The estimation of high order statistics requires long 
sample sets. As such, it has a high computational complexity.       

Several modulation recognition approaches have been 
established in last two decades [7], [8], [9], [10]. Most of the 
approaches can be divided into two groups: Maximum 
likelihood approaches and pattern recognition approaches [4], 
[6]. In maximum likelihood approaches, the test statistics 
require advance acquaintance about the signal, though the 

decision rules are simple. But for statistical pattern 
recognition approaches, the decision rules are complicated [6].  

In this paper, we have compared a pattern recognition 
approach based on statistical properties for some classic 
digital modulations including ASK2 (Amplitude Shift Keying 
2), ASK4, PSK2 (Phase Shift Keying 2), PSK4, FSK2 
(Frequency Shift Keying 2), FSK4, etc. To estimate the 
statistical features of signals, various appraisals of windows 
have been taken into consideration. Moreover, different 
segments of samples have been chosen and the obtained 
results have been discussed and compared

II. DIGITAL MODULATION 
In this section, the common depiction of modulation 

signals has been presented [11], [12]. Let 𝑠𝑠(𝑡𝑡)  denotes the 
received signal. For narrow band signals in simplified 
transmission channels, 𝑠𝑠(𝑡𝑡) can be written as follow:  

 
 𝑠𝑠(𝑡𝑡) = 𝑚𝑚(𝑡𝑡) + 𝑛𝑛(𝑡𝑡)                          (1)   
    

where, 𝑚𝑚(𝑡𝑡) is considered as the modulated signal and 𝑛𝑛(𝑡𝑡) is 
an Additive White Gaussian Noise (AWGN). The signal part 
can be described either in quadrature, polar or complex form. 
Let 𝑐𝑐(𝑡𝑡) denotes the carrier wave signal. It can be written as:  
 
  𝑐𝑐(𝑡𝑡) = 𝐴𝐴𝑐𝑐𝐴𝐴𝑠𝑠(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜓𝜓𝑐𝑐)           (2) 
 
where, 𝑓𝑓𝑐𝑐  is the carrier frequency, A is the carrier amplitude 
and 𝜓𝜓𝑐𝑐  is the phase off-set. The information of modulating 
signals can be sent out by the carrier wave’s phase (PSK), 
frequency (FSK), amplitude (ASK) or a combination 
(Quadrature Amplitude Modulation). In general, the 
modulated signal can be written, using the In phase and 
Quadrature forms as follow: 
 
      𝑚𝑚(𝑡𝑡) = 𝑝𝑝𝑛𝑛(𝑡𝑡)𝑐𝑐𝐴𝐴𝑠𝑠(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) − 𝑞𝑞𝑛𝑛(𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) + 𝑛𝑛(𝑡𝑡)    (3)   
                     
here, 𝑝𝑝𝑛𝑛(𝑡𝑡)  and 𝑞𝑞𝑛𝑛(𝑡𝑡)  are the in phase and quadrature 
components of 𝑚𝑚(𝑡𝑡)  respectively. By setting up complex 
envelope notations 𝑚𝑚𝑒𝑒  of the modulated signal, it can be 
written as: 
 



                𝑚𝑚(𝑡𝑡) =  𝑅𝑅𝑒𝑒{𝑚𝑚𝑒𝑒(𝑡𝑡)𝑒𝑒𝑒𝑒𝑝𝑝(𝑗𝑗2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡)}                            (4) 
 

here, 𝑗𝑗 is the complex number. The complex envelope 𝑚𝑚𝑒𝑒(𝑡𝑡) 
can be written as: 
 

               𝑚𝑚𝑒𝑒(𝑡𝑡) = 𝑝𝑝𝑛𝑛(𝑡𝑡) + 𝑗𝑗𝑞𝑞𝑛𝑛(𝑡𝑡)                         (5) 
   
From the complex envelope, constellations of that signal can 
be achieved [2].  Constellations can be used to extract lots of 
modulated signal features [2]. From the above equation it can 
be seen that carrier frequency is an important feature which 
must be extracted to distinguish the modulation schemes. The 
carrier frequency can be well estimated [16]. In this paper, we 
assume that the carrier frequency has already been estimated. 

III. ALGORITHM EVALUATION 
The modulation recognitions include converting the analog 

Radio Frequency (RF) signal to a digital Intermediate 
Frequency (IF) signal, extracting modulation features and 
recognizing modulation types [13]. Some classifiers can 
directly extract the features from the IF signals. But in most 
cases, a common estimation is essential to convert the IF 
signal into In phase and Quadrature components and find out 
modulation features.  

The result of modulation type is obtained by using a 
confusion matrix, which is a table of statistical values 
achieved for some particular signal to noise ratios (SNR) [3], 
[13], [14]. This table provides the value of probability of 
success corresponding to a list of possible modulation types. 
The probabilities of success versus SNR curves are different 
for different modulation types. Probability of success can be a 
performance measurement only, if the two classifiers are 
developed under similar assumptions [14]. Therefore 
elementary comparison among dissimilar algorithms should 
be studied. The modulation recognition procedure requires 
feature extraction as well as a decision procedure. The task of 
the front end is the channel equalization and to produce the 
correct sampled signal representation, before feeding the 
measurements to the feature extraction system [6]. The 
features are considered as the input for the decision procedure 
and most probable modulation type should be the output [6]. 

IV. REVIEW OF MODULATION CLASSIFICATION 
Modulation classification approaches can be divided in 

basically two groups: Maximum Likelihood approaches and 
Pattern recognition approaches [6]. Some of the pattern 
recognition method has been implemented in our paper. In this 
section we reviewed some of the well known methods. 

A. Maximum Likelihood Approach 
In the maximum likelihood approach, the classification is 

analysed as a multiple hypothesis testing problem, where a 
hypothesis,  𝐻𝐻𝑠𝑠 , is arbitrarily assigned to the 𝑠𝑠𝑡𝑡ℎ  modulation 
type of m possible types [6]. The ML classifier is established 
on the conditional probability density function, (pdf),  𝑝𝑝(𝑒𝑒|𝐻𝐻𝑠𝑠), 
𝑠𝑠 = 1, 2, … . ,𝑚𝑚, where x is the observation. If the observation 
sequence 𝑋𝑋[𝑘𝑘], 𝑘𝑘 = 1,2 … . ,𝑛𝑛  is independent and identically 

distributed (i.i.d), the likelihood function (LF), 𝐿𝐿(𝑒𝑒|𝐻𝐻𝑠𝑠) , can 
be expressed [6] as: 

 
𝑝𝑝(𝑒𝑒|𝐻𝐻𝑠𝑠) = ∏ 𝑝𝑝(𝑋𝑋[𝑘𝑘]|𝐻𝐻𝑠𝑠)𝑛𝑛

𝑙𝑙=1 ≜ 𝐿𝐿(𝑒𝑒|𝐻𝐻𝑠𝑠)                           (6) 
 
The ML classifier reports the 𝑗𝑗𝑡𝑡ℎ  modulation type based on 

the observation when 𝐿𝐿�𝑒𝑒�𝐻𝐻𝑗𝑗 � > 𝐿𝐿(𝑒𝑒|𝐻𝐻𝑠𝑠) , 𝑗𝑗 ≠ 𝑠𝑠  and 𝑗𝑗, 𝑠𝑠 =
1, … . ,𝑚𝑚.  

B. Pattern Recognition Approach 
The general pattern recognition system has basically three 

parts: sensing, feature extraction and decision procedures [15]. 
Each measurement, observation, or pattern vector can be 
written as: 

 
𝑒𝑒 = (𝑋𝑋[1],𝑋𝑋[2], … . . ,𝑋𝑋[𝑛𝑛] )𝑇𝑇.                                          (7) 
 
Here the pattern vector describes a characteristic of a 

pattern or object. The pattern vector could contain redundant 
information. We should decrease the dimensionality of the 
pattern space to simplify the computational effort [17]. The 
decision procedure may have decision functions, distance 
functions, or neural networks [15]. 

V. PROBLEM CHARECTERIZATION 
Azzouz and Nandi proposed nine features for the 

recognition of classical analog and digital modulations [1], [6].  
The features were derived from the signal’s power spectral 
density, instantaneous amplitude, instantaneous frequency and 
phase. The features were used to classify analog AM, FM, 
DSB, USB, LSB, and digital ASK2, ASK4, PSK2, PSK4, 
FSK2, FSK4 [3]. Usually the standard classification of ASK2 
and PSK2 is not possible because in most of the cases their 
constellations are used as an important parameter and for 
PSK2 and ASK2, constellations are identical [2], [6]. 

Azzouz and Nandi used two different approaches to 
classify modulated signals. First approach is a decision 
theoretic tree classifier where each feature is tested 
corresponding to a particular threshold value at a time [2]. The 
success rate of the tree classifier is based on the order of the 
features tested in these branches. In the second approach, an 
artificial neural network has been used. In these approaches, 
all features are measured all together which should involve a 
better performance. In this section, Azzouz and Nandi’s 
algorithm is briefly described and emphasized.  

A. Deviations in instantaneous properties 
Nine features have been used in Azzouz and Nandi’s 

method to identify the original modulated signal. These 
features are described as follows: 
 

1. The maximum value of the spectral power density for 
normalized centred instantaneous amplitude, γmax. It is 
given by, 
 

γmax= 1
𝑁𝑁𝑠𝑠

(𝑚𝑚𝑚𝑚𝑒𝑒|𝐷𝐷𝐷𝐷𝑇𝑇[𝑚𝑚𝑐𝑐𝑛𝑛 [𝑠𝑠]]|2)          (8)                        
 



here, DFT is the Discrete Fourier Transform of the RF 
signal. Ns is the number of samples per segment, 𝑚𝑚𝑐𝑐𝑛𝑛  
is the normalized centred instantaneous amplitude 
and 𝑠𝑠 = 1,2, … . ,𝑁𝑁𝑠𝑠 . 

   
2. The standard deviation of the absolute value of the 

centred non linear component of the instantaneous 
phase, 𝜎𝜎𝑚𝑚𝑝𝑝  is, 
 

          𝜎𝜎𝑚𝑚𝑝𝑝=� 1
𝑁𝑁𝑠𝑠

(∑𝜑𝜑𝑁𝑁𝐿𝐿2 (𝑠𝑠)) − ( 1
𝑁𝑁𝑠𝑠
∑|𝜑𝜑𝑁𝑁𝐿𝐿(𝑠𝑠)|)2        (9) 

    
here, 𝜑𝜑𝑁𝑁𝐿𝐿 is the centred non linear component of 
instantaneous phase. 𝑁𝑁𝑠𝑠  is the number of samples 
in 𝜑𝜑𝑁𝑁𝐿𝐿 . 

 
3. The standard deviation of the centered non linear 

component of the direct instantaneous phase, 𝜎𝜎𝑑𝑑𝑝𝑝  is, 
 

𝜎𝜎𝑑𝑑𝑝𝑝=� 1
𝑁𝑁𝑠𝑠

(∑𝜑𝜑𝑁𝑁𝐿𝐿2 (𝑠𝑠)) − ( 1
𝑁𝑁𝑠𝑠
∑𝜑𝜑𝑁𝑁𝐿𝐿 (𝑠𝑠))2                 (10) 

 
4. The spectrum symmetry about the carrier frequency, 

𝑃𝑃 is given by, 
 
         𝑃𝑃 = 𝑃𝑃𝐿𝐿−𝑃𝑃𝑈𝑈

𝑃𝑃𝐿𝐿+𝑃𝑃𝑈𝑈
            (11) 

 
It is calculated by the difference of the power in the 
upper and the lower sidebands normalized by the total 
power. The lower sideband power is, 
 𝑃𝑃𝐿𝐿 = ∑ |𝑋𝑋𝑐𝑐(𝑠𝑠)|2𝑓𝑓𝑐𝑐𝑛𝑛

𝑠𝑠=1  and upper sideband power is,      
𝑃𝑃𝑈𝑈 = ∑ |𝑋𝑋𝑐𝑐(𝑠𝑠 + 𝑓𝑓𝑐𝑐𝑛𝑛 + 1)|2𝑓𝑓𝑐𝑐𝑛𝑛

𝑠𝑠=1 . Xc(i) is the Discrete 
Fourier transform of RF signal and 𝑓𝑓𝑐𝑐𝑛𝑛  is the sample 
number corresponding to the carrier frequency. 

 
5. The standard deviation of the absolute value of the 

normalized centred instantaneous amplitude, 𝜎𝜎𝑚𝑚𝑚𝑚  is, 
 

𝜎𝜎𝑚𝑚𝑚𝑚=� 1
𝑁𝑁𝑠𝑠

(∑ ∑𝑚𝑚𝑐𝑐𝑛𝑛2 (𝑠𝑠) − ( 1
𝑁𝑁𝑠𝑠
∑|𝑚𝑚𝑐𝑐𝑛𝑛 (𝑠𝑠)|)2𝑁𝑁𝑠𝑠

𝑠𝑠=1          (12) 

 
 

6. The standard deviation of the absolute value of the 
normalized centred instantaneous frequency, 𝜎𝜎𝑚𝑚𝑓𝑓  is,  
 

𝜎𝜎𝑚𝑚𝑓𝑓= � 1
𝑁𝑁𝑠𝑠

(∑𝑓𝑓𝑁𝑁2 (𝑠𝑠)) − ( 1
𝑁𝑁𝑠𝑠
⌈𝑓𝑓𝑁𝑁(𝑠𝑠)⌉)2                        (13) 

 
here, 𝑓𝑓𝑁𝑁(𝑠𝑠)  is the normalized centred instantaneous 
frequency. 

  
7. The standard deviation of the normalized centred 

instantaneous amplitude, 𝜎𝜎𝑚𝑚  is computed by, 
 

𝜎𝜎𝑚𝑚 = � 1
𝑁𝑁𝑠𝑠

(∑ ∑𝑚𝑚𝑐𝑐𝑛𝑛2 (𝑠𝑠) − � 1
𝑁𝑁𝑠𝑠
∑ |𝑚𝑚𝑐𝑐𝑛𝑛 (𝑠𝑠)|𝑁𝑁𝑠𝑠
𝑠𝑠=1 �

2𝑁𝑁𝑠𝑠
𝑠𝑠=1      (14)      

 
8. The kurtosis of the normalized centred instantaneous 

amplitude, 𝑘𝑘𝑚𝑚  is given by, 
 
𝑘𝑘𝑚𝑚= 𝐸𝐸�𝑚𝑚𝑐𝑐𝑛𝑛4 (𝑠𝑠)�

�𝐸𝐸{𝑚𝑚𝑐𝑐𝑛𝑛2 (𝑠𝑠)}�
2               (15) 

 
where, 𝑚𝑚𝑐𝑐𝑛𝑛  is the normalized-centred instantaneous 
amplitude. 

 
9. The kurtosis of the normalized centred instantaneous 

frequency, 𝑘𝑘𝑓𝑓  is given by, 
 
𝑘𝑘𝑓𝑓= 𝐸𝐸�𝑓𝑓𝑁𝑁

4(𝑠𝑠)�

�𝐸𝐸{𝑓𝑓𝑁𝑁
2(𝑠𝑠)}�

2          (16) 

 
where, 𝑓𝑓𝑁𝑁  is the normalized-centred instantaneous 
frequency 
 

Statistical parameters depend on number of samples, types 
of window, width of window etc. The impact of these 
parameters on the overall performance of the algorithm has 
been considered in our study. 

VI. CLASSIFICATION 
Different modulated signals have been generated to study 

some of the method presented in this paper. The digital 
modulation types produced for simulations are ASK2, ASK4, 
PSK2, PSK4, FSK2 and FSK4. 1000 samples have been taken 
for each simulation. The modulating signals have been 
generated with a relative carrier frequency, 𝑓𝑓𝑐𝑐 = 1 , and 
sampling frequency, 𝑓𝑓𝑠𝑠 = 10 . For simplicity, the symbol 
duration has been considered 𝑇𝑇 = 1 for all the simulations. An 
Additive White Gaussian Noise (AWGN) has been added to 
the modulated signal. The signal to noise ratio (SNR) is taken 
as the ratio of the power of the signal to the power of the noise 
and it is expressed in decibels. 

In this section, a Modulation classification scheme for 
ASK2, ASK4, PSK2, PSK4, FSK2 and FSK4 has been 
compared. We have chosen Azzouz’s two classification 
parameters to distinguish the classic modulations stated above. 
These two parameters are γmax and 𝜎𝜎𝑚𝑚𝑓𝑓 . 

 The first parameter, γmax, is the spectral power density of 
the normalized centred instantaneous amplitude. In Azzouz 
algorithm, this parameter can be used to divide the modulated 
signal into two groups.  

Our experimental results, as well as many others’ results 
[2] show that γmax is not enough to distinguish the PSK and 
FSK in lower signal to noise ratio. Therefore, this parameter 
should be used to distinguish only the ASK signals from 
others.  

In this experiment, we have used different windows 
including Hamming, Bartlett, Gaussian, etc. The maximum 
power spectral density for different SNR has been taken out 
using these windows.  Fig. 1 and Fig. 2 show γmax for different 



SNR using Gaussian window and Bartlett window 
respectively.  

 
Fig. 1. Maximum Spectral Power Density for different Signal to Noise Ratio 
using Gaussian window. 
 

      
Fig. 2.  Maximum Spectral Power Density for different Signal to Noise Ratio 
using Bartlett window 
  
Fig. 3 represents γmax for different SNR obtained by Hamming 
window. The threshold value can be varied to some extent for 
different windows. In all cases, we can separate ASK signals 
from PSKs and FSKs even for SNR lower than zero. 
 
    We have also compared the parameter for different 
segments of samples. First, we used 1000 samples for each 
segment. Then we used overlapping, i.e. for the first segment 
we took first 1000 samples then for the second segment we 
took 700th to 1700th samples and so on. Fig. 4 represents γmax 
for different SNR obtained by overlapped samples. In both 
cases it has been found that ASK signals can be distinguished 
from the PSK and FSK signals. 
 

 
 

 
Fig. 3. Maximum Spectral Power Density for different Signal to Noise Ratio 
using Hamming window 
 

 
Fig. 4.  Maximum Spectral Power Density for different Signal to Noise Ratio 
using Overlapped Samples. 

 
However, by using the overlapped samples we have 

achieved almost the same result, as the non overlapped 
samples.  

 
Now the second step is to distinguish between PSK and 

FSK signals. PSK modulations can be categorized by 
discontinuous instantaneous phase [2]. Such phase generates a 
constant instantaneous frequency, but during the time intervals 
of the phase transition, dirac impulses appear for the 
instantaneous frequencies [2]. On the other hand, the 
instantaneous frequency of FSK can be considered as a 
sequence of rectangular shaped window [2].This means that 
PSK and FSK signals have different instantaneous frequency 
representations. Therefore, we have taken Azouz’s 
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parameter, 𝜎𝜎𝑚𝑚𝑓𝑓 , which is the standard deviation of normalized 
centred instantaneous frequency.  

 
Fig. 5. Standard deviation of normalized centred instantaneous frequency for 
different Signal to Noise Ratio  
 

First the transmitted signal is passed through by an 
AWGN channel. Then the received signal’s instantaneous 
frequency has been taken. Finally the standard deviation of the 
instantaneous frequency has been calculated and it has been 
plotted with respect to different SNR. From our experiment it 
has been shown, that 𝜎𝜎𝑚𝑚𝑓𝑓  can distinguish between PSK and 
FSK even in the lower signal to noise ratio. For lower SNR, 
an adaptive threshold should be taken. 

In our experimental studies, we have found that Azzouz’s 
two parameter can be used to distinguish ASK, PSK and FSK. 
For separating ASK from other signals i.e. PSK and FSK, the 
classification works even when signal to noise ratio is 0. 
Finally, we can persist that these two parameters i.e. 
maximum spectral power density and standard deviation of 
normalized centred instantaneous frequency are functional to 
separate classic modulation types.   

   VII.CONCLUSION 

In this paper, several features of modulation classification 
have been studied. The relevant characteristics of 
communication signals and statistical tools have been 
presented. A literature review of the previous method was 
carried out and one of the most well known approaches has 
been surveyed with more details. Also, the comparison for 
modulation classification has been emphasized by using 
statistical process, different estimations of windows and 
different number of samples. However, only some classic 
modulations have been considered. Our upcoming works will 
be focused on the classification of the more complex 
modulation schemes such as OFDM, TCM etc.  
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