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Abstract—The autonomous underwater vehicle (AUV) DAU-
RADE platform can acquire bathymetry with two acoustic sen-
sors: a multibeam echo sounder (MBES) and an interferometric
sidescan sonar (ISSS). The two sensors (MBES and ISSS) are
synchronized and they can simultaneously operate and acquire
the bathymetry with different resolutions, geometries and error
models. This complementarily allows us to improve the accuracy
and the coverage of the collected bathymetric data by fusing both
of them. We applied the fusion process on actual data from the
two bathymetric sensors of DAURADE (Reson 7125 MBES and
Klein 5000 Interferometric); the obtained results are presented
and discussed.

I. INTRODUCTION

A major issue for the international hydrographic commu-
nity is how to build an accurate digital terrain model (DTM)
knowing the irreducible uncertainties in modern surveys. In
fact, DTM estimation requires a huge amount of soundings
which are usually noisy. Various automatic data-cleaning
systems and DTM production package have been recently
developed using the Combined Uncertainty and Bathymetry
Estimation (CUBE) [1] or the Cleaning through Hierarchic
Adaptive and Robust Modeling (CHARM) [2]. The latter two
algorithms are implemented in order to process full coverage
multibeam data in which every sounding should include an
estimation of its uncertainty (CUBE case). This requirement
is achievable using the quality factor in [3]. However CUBE
and CHARM algorithms can not integrate heterogeneous and
qualitative data as it can be done by an expert. When many
bathymetric data with different spatial resolutions, coverage
and uncertainties are available for the same area, a question
arises out of this problem: can this redundancy and comple-
mentarities be used to generate more accurate DTM? In the
last decade, autonomous underwater vehicles (AUV), equipped
with a wide variety of acoustic sensors or sonar systems,
have been deployed to collect bathymetric data. In shallow
water and for full coverage area survey, the two most used
systems are the multibeam echo sounder (MBES) and the in-
terferometric sidescan sonar (ISSS). The MBES is considered
as the reference system for an accurate hydrographic survey.
Unfortunately MBES on AUV navigating close to the seafloor
suffers from its limited angular coverage. With such limitation,
a full coverage is time consuming and not compatible with the
battery autonomy. Therefore ISSS can advantageously be used

in this case. An ISSS has a swath width over 10-times the
altitude of the sonar and produce high resolution bathymetry
across track. The latter propriety helps significantly reducing
the time of the survey for a full coverage. On the other hand,
such system suffers from many drawbacks: The geometry of
ISSS transducers does not allow gathering data in nadir area, it
has a limited bathymetric accuracy about 2-3% of water depth,
and it is penalized by the baseline decorrelation and the shifting
footprint effect. In spite of these significant disadvantages,
recent developments in system electronics and processing
algorithms have improved ISSS performance. In many AUV
survey missions (such as detecting and mapping submerged
wrecks, rocks and obstructions), the fuse of bathymetry derived
from MBES and ISSS can improve the productivity.
This paper is organized as follows: Section II describes the
fusion model of bathymetric data, AUV DAURADE and the
two swath bathymetric sonars are presented in section III, and
section VI discusses the results.

II. BATHYMETRIC DATA FUSION PROCEDURE

In radar community, the most used fusion algorithm
to combine DTMs (SAR interferometry, LIDAR, etc.) is a
weighted average of inputs in each grid cell. As the weight
factors are not usually available, data accuracies are estimated
from DTM (roughness, slope, etc...). To be robust against
blunders, other methods are used by representing local patches
as a sparse combination of basis patches [4]. These algorithms
can not integrate a prior knowledge about the precision and re-
liability of sensors which can vary with time and environment
conditions. In order to overcome limitations of each DTM, an
intelligent fusion which considers uncertainty and reliability
of each sensor becomes necessary.
To deal with such kind of measurement, many theories have
been proved suitable for modelling the uncertainty. It is worth
mentionning that imprecise probability, possibility theory and
theory of belief functions are widely used in the literature.
The theory of belief functions, also known as Dempster-Shafer
Theory (DST), was developed by Shafer [5] and initiated by
the work of Dempster on imprecise probabilities. Actually, it
is one of popular approaches to handle uncertainty in literature
for data fusion and it is often considered as a generalized
model of the probability and possibility theory. The basic of
this theory is omitted in this manuscript. Interested readers



can find sufficient interpretations of evidence theory in the
literature ([6], [7]).

A. Fusion model

In our application, inputs are the sounding zi with a
known position yi and a standard deviation σi obtained from
MBS and ISSS. We are aiming to improve the accuracy of
zi values by combining the outputs of the sonars. In [8],
Petit-Renaud and Denoeux propose an evidential regression
(EVREG) analysis of imprecise and uncertain data. In their
model, evidential theory are extended to fuzzy sets where focal
elements are fuzzy variables. The basic idea is to construct
a fuzzy belief assignment (FBA) in two steps: discounting
FBAs mi according to a measure of dissimilarity among input
vectors, and the combination of a discounted FBAs [8]. The
model in our case may be summarized as follows.
Given a set of n sounding values (yi, zi, σi, pi) a FBA mi can
be defined for each pair (yi,mi) as:

mi(Fi) = pi
mi(Z) = 1− pi (1)

where Fi is a Gaussian fuzzy number with a mean zi and
a standard deviation σi and pi stand for the reliability of the
sonar. Each input element ei (I = {ei|ei = (yi,mi), i =
1, 2, ..., n}) is a piece of evidence concerning the possible
value of zi in a given position y, which can be represented
by a FBA mz[y, ei] as a discounting of mi:

mz[y, ei] =


mi(A)ϕ(‖y − yi‖) if A ∈ F (mi) \ {Z}
1− ϕ(‖y − yi‖) if A = Z

0 otherwise
(2)

where ϕ(.) is a decreasing function from R+ → [0, 1]
satisfying that ϕ(0) ∈]0, 1[ and limd→+∞ ϕ(d) = 0. ϕ(.)
can be considered as a discounting function that measures
the dissimilarity of the variable of interest z using a suitable
metric ‖.‖ between input vectors y and yi. If y is close to yi,
mz[y, ei] and mi become very similar to each other and vice
versa. When the metric ‖.‖ is defined as the euclidian distance,
an evident choice for ϕ(.) becomes [8]:

ϕ(d) = γ exp(−d2) (3)

where γ ∈]0, 1[ (usually γ ∈]0.9, 1[). The information
provided by each element of the input set can be combined
by the conjunctive rule of Dempster. In practice, the effect of
inputs yi far from the position of interest y can be neglected
and we should consider only k nearest neighbors. The final
FBA becomes:

mz[y, I] = ∩ki=1mz[y, ei] (4)

The presented EVREG model is applied for each sensor,
and its outputs are combined using Dempsters rule to form
a new FBA mi = ms1

i ⊕ ms2
i . The probabilistic density

BetP [y, I] (named pignistic probability function) associated
to mz[y, I] has the following expression:

BetP [y, I](z) =
∑

A∈F (m∗
z [y,I])

m∗z[y, I](A)
A(y)

|A|
(5)

where m∗z[y, I] is the normalized version of mz[y, I] and
|A| is the cardinality of A.
To predict the ẑ value, we can use the center of gravity of A
(z∗A). Therefore, ẑ can be expressed as:

ẑ(y) =
∑

A∈F (m∗
z [y,I])

m∗z[y, I]z∗A (6)

The uncertainty involved in the prediction of FBA can be
calculated using the measure of nonspecifity generalized for
belief functions [9] which is defined as:

N(mz[y, I]) =
∑

A∈F (mz [y,I])

mz[y, I](A) log2 |A| (7)

The measure of nonspecifity represents our inability to
distinguish true from false possible alternatives.

B. Measurement of sounding uncertainty

Recently, a new quality factor was proposed by Lurton et
al. in [3] and [10] to measure the bathymetric uncertainty of
each sounding directly on the received sonar signal. This factor
represents the ratio between the estimated sounding and its
standard deviation obtained from signal characteristics. In case
of MBES, the quality factor depends on the detection algorithm
applied to the complex signal. When the amplitude signal is
processed using a centre of gravity approach, the uncertainty
is measured as in [10]:

qA =

√
12

B
√

4
π − 1

tD√
NTeff

(8)

where tD is the estimated detection instant, N is the
number of independent time samples, B is a factor depending
on the envelope shape and Teff is twice the second order
moment of the envelope.
For zero-phase difference instant estimation, the uncertainty is
defined by [10] as:

qφ =
αtD
δ∆φ

1√
(tD−t)2∑N

i=1
(ti−t)2

+ 1
N
Np

(9)

Where α is the phase ramp slope, δ∆φ is the phase
standard deviation and Np is the number of samples in
transmitted signal.
δ∆φ can be computed from the variations of the actual phase
values around the ideal fitted curve.

In the case of ISSS processing, phase difference fluctua-
tions cause uncertainty in sounding detection as [3]:



qFφ =
1

tan θ
√

( λ
2π cos γ δ∆φ)2 + ( cT cos2 θ

2H
√
12 sin θ

)2
(10)

where a is the interferometer baseline, λ stands for the
wavelength, γ is the angle of arrival referenced to baseline
axis, the arrival angle is θ, T is the signal duration and H
represents the depth. The phase-difference standard deviation
δ∆φ can be estimated in similar way to zero-phase difference
instant processing over a time interval around the detection
instant.
These quality factors were tested on simulated and actual data
and they provide a promising perspective.

III. DATA AND SONAR DESCRIPTION

A. AUV Daurade

The Daurade vehicle was built by ECA Company for the
benefit of the French hydrographic and oceanographic service
(SHOM) and the Atlantic undersea studies group (GESMA). It
is a multi-purpose experimental AUV for Rapid Environment
Assessment (REA), which is a military concept to acquire and
transmit rapidly environment data on a poorly known area. The
vehicle is 5m length and has 10 hours autonomy at 4 knots.
It contains a PHINS Inertial Navigation System, GPS receiver
and Doppler Velocity Log which improves navigation accuracy
and extends full autonomous operation. Daurade also comes
with a navigation post-processing system (DELPH INS), which
can be applied to increase the navigational integrity and to
maximize the position accuracy using GPS surface fix.

B. Swath bathymetric sonars

The DAURADE carries a multibeam echosounder and an
interferometric synthetic aperture sonar both mapping sensors.
The multibeam echosounder is a SeaBat 7125-AUV charac-
terized by: 512 beams of width 0.5◦ × 1◦; a total aperture of
128◦; a frequency of transducer 400 kHz; equidistant beams;
300 m max range; depth resolution 5 mm. The interferometric
sidescan sonar is a Klein series 5500, a frequency of transducer
455 kHz, baseline spacing 6.5 wavelengths, 75m-150m range.

C. Data processing methods

The study area is located near the west coast of France, in
the harbor of Brest. The water depth of the area ranges from
19 to 34 meters. The seabed presents a slope in the south
to north direction. Two survey lines spacing of 115m were
used. This provided a light degree of overlapped data for the
interferometric sonar and no overlapping for MBS soundings.
The AUV depth was maintained to 7m during the survey which
is not appropriate for our study to show the disadvantage of
the MBS when operating in shallow water. The area covered
by the two ISSS lines is about 260 by 135 meters.

For the survey the klein 5500 was run on a range scale
of 75m per channel (the other range scales are very noisy).
Bathymetric data is measured using the so-called Vernier
Method which consists of estimating a unique receiving angle
by combining pairs of stave measurements ([11], [12]). The
standard deviation of each sounding is estimated according to

(10). The final soundings were de-spiked for gross outliers
and down sampled to one sounding each 20 cm across track
distance to reduce the huge amount of data (2276 per channel
per ping). Bathymetric soundings from MBS are calculated
from the raw formed beam data using a center of gravity
approach for the amplitude data and a zero-phase difference
instant estimation for the phase difference data. The standard
deviation of each sounding is estimated according to (8) and
(9). Sounding with better quality factor was maintained for
each ping.

The sound speed profile was not available so data wasn’t
corrected for the water column refraction which affected the
horizontal and vertical positions of soundings for both systems,
specially the ISSS with more grazing angles. For purpose of
MBS-ISSS bathymetry fusion, we gridded the area covered
by ISSS. Gridding was carried out to a 0.2 meter pixel
resolution. Following gridding, 5 nearest neighbors soundings
from each sonar were employed to estimate the fused sounding.
Reliability pi is set to 1, so only sounding uncertainty is used
in fusion process.

IV. EXPERIMENTAL RESULTS

Fig.1 and Fig.2 present the bathymetric data which should
be fused. A blind zone can be observed on the nadir of the
ISSS bathymetry and the noisy outer beams. MBS bathymetry
has a gap in southern line due a malfunction of the sonar when
recording raw formed beam data. Notice that bathymetric data
aren’t smoothed to not bias the estimated standard deviation.
Fig.3 presents outcomes of our algorithm i.e the obtained
bathymetry. Some parts of the image are noisy because of the
residual outliers of ISSS data, uncorrected bathymetry with
water column celerity profile and the AUV drift which is not
perfectly corrected by DELPH INS software.

to have an idea about the quality of the fused
bathymetry, Fig.4 and Fig.5 show respectively the measure of
nonspecificity and the first to the ninth deciles of the pignistic
probability interval. As expected, the area covered by the
MBS data was more precise than the other. This is clearly
identifiable on a cross profile (south to north) of a single
grid line of the measure of the nonspecificity (Fig.6) which
expresses the uncertainty of the fused bathymetry.
Fig.7 presents the estimated depth along a cross profile and
the 0.1 and 0.9 quantiles of the pignistic probability, as a
confident interval. In Fig.6, we can notice that the presence
of MBS data makes the confident interval very narrow. We
can notice also, the bow tie effect of the end of across swath
due to the noisy outer beams of the interferometric sidescan
sonar.

As with all interferometric systems, when the slopes on
the seabed reach certain stage, the phase calculation begins to
fail. This is the case of ISSS data on Fig.5 for the northern
line, where the confident interval is wider than the other line
without slope.

V. CONCLUSION

In this manuscript, bathymetric data fusion using belief
function has been described. This approach allows us to



Fig. 1. Gridded Klein 5500 bathymetry on two parallel lines.

Fig. 2. Gridded Reson 7125 bathymetry on two parallel lines.

integrate the precision and the reliability of source data. The
targeted estimator of the bathymetry error associated with
every sounding involved in the fusion process should gives
an objective quality of the fused bathymetry.
In spite of the difficult steady area and the use of data not
corrected with water column celerity profile, the fusion method
allows us to obtain a bathymetric data with quality factors very
useful for Rapid Environment Assessment(REA). The fusion
process depends on AUV navigation (horizontal position) and
all common sounding corrections. Our future work consists in

Fig. 3. Gridded bathymetry after fusion.

Fig. 4. The measurement of nonspecificity of fused bathymetry.

applying the fusion process to a corrected bathymetric data on
a flat seabed and to define an optimum adaptive survey using
the fused bathymetric quality.
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Fig. 5. The difference between 0.9 and 0.1 quantiles of pignistic probability
on log scale.
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Fig. 6. A cross profile of a single grid line

REFERENCES

[1] B. R. Calder and L. A. Mayer, “Automatic processing of high-rate,
high-density multibeam echosounder data,” Geochemistry, Geophysics,
Geosystems, vol. 4, no. 6, pp. n/a–n/a, 2003. [Online]. Available:
http://dx.doi.org/10.1029/2002GC000486
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