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Abstract| In this work, we deal with the elimination of

artifacts (electrodes, muscle, respiration, etc.) from the

electrocardiographic (ECG) signal. We use a new tool

called independent component analysis (ICA) that blindly

separate mixed statisticaly independent signals. ICA can

separate the interference, even if they overlap in frequency.

In order to estimate the mixing parameters in real-time, we

propose a self-adaptive step-size, derived from the study

of the averaged behavior of those parameters, and a two-

layers neural network. Simulations were carried out to

show the performance of the algorithm using a standard

ECG database.

Keywords: Independent component analysis, blind sep-

aration, adaptive �ltering, cardiac artifacts, ECG analy-

sis.

1 Introduction

Many attempts were carried out to eliminate corrupting

artifacts from the actual cardiac one when measuring the

electrocardiographic (ECG) signal.

Cardiac signals show the well known repeating and al-

most periodic pattern. This caracteristic of physiological

signals was already explored in some works(e.g, [5, 17, 21])

by synchronizing the parameters of the �lter with the pe-

riod of the signal. However, those �lters fail to remove the

interference when it has the same frequency of the cardiac

signal.

Recently, many works were carried out in the �eld of

blind source separation (BSS), using a new tool called

independent component analysis (ICA). This large number

of works may be explained because the ICA algorithms are

in general elegant, simple and may deal with signals that

second order statistics (SOS) methods1 in general do not

work. This is because SOS algorithms usually search for

1such as the one proposed in [5, 17, 21].

a solution that decorrelates the input signals while ICA

looks for an independent solution.

ICA is based on the following principle. Assuming that

the original (or source) signals have been mixed linearly,

and that these mixed signals are available, ICA �nds in

a blind manner a linear combination of the mixed sig-

nals which recovers the original source signals, possibly

re-scaled. This is carried out by using the principle of en-

tropy maximization of non-linearly transformed signals.

Our main scope here is not necessarily to propose new

algorithms. There are many of them already available.

Our study goes toward speed of convergence and quality

of the output signal.

In this work we propose a self-adaptive step size for ICA

algorithms. This study was motivated by the necessity

of a faster convergence, since we are mainly thinking in

the implementation of this system for real-time. Instead

of dealing with the non-linear cost-function of ICA algo-

rithms which would be optimum, we carry out our analysis

in a mean squared framework. For this approach, we can

solve the problem of bounds to the step-size and derive

the optimum one for one step convergence. In this �eld,

there is the work of Douglas and Cichocki[15], with focus

on decorrelation networks. Cichocki and his colleagues

[11] also proposed a self-adaptive step-size. However, our

attempt here is to �nd a step-size which is directly based

on the evolution of the algorithm.

Moreover, we propose a neural network consisting of

two layers of ICA algorithms. Some works [6, 16, 9] sug-

gested to carry out whitening before the ICA algorithm

in order to orthogonalize the inputs, which yields a faster

convergence. The basis of our two-layer network is the

same. However, we argue that using a cascade of two

ICA algorithms is a stronger principle, because both are

searching for independent solutions. Belouchrani et. al.[8]

also proposed a multi-layer network, but they were not

interested in comparing the multi-layer results with the
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pre-whitening. This is carried out here, by simulations,

for di�erent initial conditions.

2 Independent Component Anal-

ysis (ICA)

The principle of ICA may be understood as follows. Con-

sider n source signals s = [s1; s2; ::; sn]
T arriving at m

receivers. Each receiver gets a linear combination of the

signals, so that we have

x = As + n; (1)

where A is an m � n matrix, and n is the noise, which

is omitted because it is usually impossible to distinguish

noise from the source signals, therefore, we omit it from

now on. The purpose of ICA is to �nd a matrix B, that

multiplied byA, will cancel the mixing e�ect. For simplic-

ity, we assume that matrix A is a n� n invertible square

matrix. Ideally, BA = I, where I is the identity.

The system output is then given by

z = Bx = BAs = Cs; (2)

where the elements of vector s must be mutually inde-

pendent. In mathematical terms, it means that the joint

probability density of the source signals must be the prod-

uct of the marginal densities of the individual sources

p(s) = �M

i=1p(si) (3)

Thus, instead of searching for a solution that uncor-

relates the signals, ICA looks for the most independent

signals. As one can see, this principle is much stronger.

3 Deriving ICA

With ICA, one wants to �nd a way to estimate the true

distribution p(s; �) of a random variable, given the samples

z1; . . . ; zN . In other words, ICA is a probability density

estimator, or density shaper.

Given the modi�able parameters �̂, we should �nd a

density estimator p̂(z; �̂) of the true density p(s; �). This

may be performed by entropy maximization, mutual infor-

mation minimization, maximum likelihood or Kullback-

Liebler (K-L) divergence. We take, for instance, the K-L

divergence, given by

lfp(s; �); p̂(z; �̂)g =

Z
p(s; �)log

p(s; �)

p̂(z; �̂)
dz: (4)

A small value of the K-L divergence lfp(s); p̂(z; �̂)g indi-

cates that p̂(z; �̂) is close to the true density p(s; �). Hence,

we should minimize lfp(s; �); p̂(z; �̂)g, and this can be done

by using a gradient method. However, instead of the con-

ventional Euclidean gradient method [6], that reads

�̂k+1 = �̂k � �k

@

@�̂k

lfp(s; �); p̂(z; �̂)g; (5)

we rather use the following gradient

�̂k+1 = �̂k � �k=
@

@�̂k

lfp(s; �); p̂(z; �̂)g; (6)

where = is a positive de�nite matrix.

This is called the relative [9], natural, or Riemannian

gradient [1, 2]. This algorithm works better in general

because the parameter space of neural networks is Rie-

mannian [3].

To obtain a better estimation, Pearlmutter and Parra

[20] derived an algorithm that extracts many parameters

related to the signal, and therefore their parameter space

S = f�̂g was built with many variables. However, in most

of the works, the gradient method shown above was de-

rived using only the weight matrix B as the parameter to

be estimated. For this case, we have = = B
T
B and the

weights of B are updated by [9]

Bk+1 = Bk � �k[I �N(zk)]Bk; (7)

where N(�) is a non-linear function. In this work, we

use the following function, as suggested by Bell and

Sejnowski[6]

Bk+1 = Bk + �k(I� ykz
T

k
)Bk; (8)

with z = Bx and y = tanh(z).

And this is the secret of ICA: this non-linearity tries

to shape the sources distribution. In other words, if one

expands this non-linearity in a series of Taylor, higher

moments appear. For example, if we use one sigmoidal

function, which is used frequently in neural networks, one

can see that

tanh(u) = u�
u
3

3
+

2u5

15
+ � � � (9)

It should be added, however, that even though these

methods are said to blindly estimate the sources, some

prior knowledge is necessary in order to choose this non-

linearity. As we have seen, ICA is also known to be a den-

sity estimator. In order words, the non-linearity g should

be chosen so that

yi = g(u) �

Z
u

�1

fs(v)dv; (10)

where fs is the density of s.

In practice, it is not very necessary that this equation

is true. For signals with a super-Gaussian distribution

(kurtosis > 0), it did not pose as a problem to separate



them using (8). In the case of sub-Gaussian signals, Ci-

chocki and his colleagues [12] suggested [12] the following

equation

Bk+1 = Bk + �k(I � zky
T

k
)Bk; (11)

An interesting discussion about this topic was carried

out by Amari [4].

3.1 Inde�nition of the Solution

Because the system works in a blind manner, B does not

necessarily converge to the inverse of A. We can only

a�rm that C = DP, where D is a diagonal, and P is a

permutation matrix [13]. Without any a priori informa-

tion, which is the case of blind source separation, nothing

can be done concerning to the permutation, but we can

still normalize the weight matrix to avoid the problem of

random scaling. An interesting solution is to preserve the

energy of the input signal, normalizing the weights by [14]

W = jdet(W)j
1

nW: (12)

3.2 Equivariance Property

An equivariant estimator �(�) for an invertible n�nmatrix

M is de�ned as [9]

�(Mzk) =M�(zk): (13)

This property can be applied to relative gradient algo-

rithms. Multiplying both sides of (7) by A yields

Ck+1 = Ck � �kfCk �N (Cksk)g: (14)

Therefore, the trajectory of the global system C = BA

is independent of A.

3.3 Filtering

Sometimes a �ltering operation can be very useful in some

ill-conditioned mixing problems. Here we discuss about a

�ltering operation that preserves the mixing matrix. With

this, one can modify the mixing (ill-conditioned) condi-

tion by some pre-processing so that the signals can be

separated. If the matrix is preserved and its inverse (or

a scaled version of it) can be estimated by ICA, then one

can easily recover the source signals.

A causal �lter for the mixed vector x with impulse re-

sponse H(t; � ), can be described by

y(t) =

Z
t

�1

H(t; � )x(�)d� =

Z
t

�1

H(t; �)As(� )d�: (15)

We assume that this �rst-order linear system may be

time-variant. Moreover, we should �nd a H(t; � ) so that

the following holds

y(t) = A

Z
t

�1

H(t; � )s(�)d�: (16)

In other words, the �ltering operation should not alter

the structure of matrix A. For this to happen, the im-

pulse response H(t; �) should be a diagonal matrix with

the same elements, i.e., H(t; � ) = h(t; � )I, which implies

that the elements of vector x should be passed through

the same �lter.

4 Time Varying Step-size for ICA

Algorithms

From (7), the output correlation matrix will be given by

Tk = E[zkz
T

k
] = E[Bkxkx

T

k
B
T

k
]: (17)

In this analysis, we make use of the independent as-

sumption. This e�ectively implies that xk is independent

of former values and that the elements of Bk are mutually

independent. This is very common in the �eld of adaptive

�ltering to use this assumption, even though it is rarely

true in practice.

If the uctuations in the elements of Bk are small, we

can thus rewrite (17) as2

Tk = E[Bk]RE[BT

k
] (18)

where x is assumed to be stationary constant, in other

words, the input vector R = E[xkx
T

k
] is constant. How-

ever, the same cannot be said about Tk = E[zkz
T

k
], thus

it is assumed to be non-stationary.

Using (7) and (18), we can write

Tk+1 = E[(1 + �k)I� �kykz
T

k
]TkE[(1 + �k)I� �kzky

T

k
] =

(1 + �k)
2
Tk � �k(1 + �k)TkPk � �k(1 + �k)P

T

k
Tk + �

2
k
P
T

k
TkP

If we assume that the variation of zk is bounded to the

interval [�1; 1], we can then say that in this limit yk � zk

and Pk � Tk. Then, (19) can be written as

Tk+1 = (1 + �k)
2
Tk � 2�k(1 + �k)T

2
k
+ �

2
k
T
3
k
: (20)

There is a unitary matrix Q that diagonalizes Tk so

that �i = Q
T
TiQ and QT

Q = I. Thus, we can rewrite

(20) as

�k+1 = (1 + �k)
2�k � 2�k(1 + �k)�

2
k
+ �

2
k
�3
k
: (21)

Notice that when deriving (21) from (20) the orthogonal

property of Q was used3.

2The following steps are similar to the one carried out by Douglas

and Cichocki[15].
3For example QTTVkQ = QTTQQTVkQ.



From (21), the eigenvalues of Tk are the elements of �k,

and are given by

�k+1;i = (1 + �k)
2
�k;i � 2�k(1 + �k)�

2
k;i

+ �
2
k
�
3
k;i
: (22)

For uniform convergence in a mean-squared sense, it

is required that �k+1;i < �k;i, which yields the following

bounds for the step-size4

0 < �k <
2

�k;i � 1
: (23)

From (23), the optimum step-size which will give one-

step convergence is

�opt =
2

�k;i � 1
(24)

Using (23) and the assumption that yk � zk, we pro-

pose then to use the following step-size to update the

weight matrix

�k =
2

y
T

k
zk + 1

(25)

When proposing the step-size above, we had in mind

the following

2X
i

�k;i + 1
<

2

�k;i + 1
<

2

�k;i � 1
(26)

5 A Network For Fast Blind Sep-

aration

In this work, we are mainly interested in using ICA to

�lter noises that are possibly overlapping in frequency the

cardiac signal. However, we do not want that this use

of ICA implies in a longer time of convergence. This is

because ICA is usually slower to converge than the LMS,

because it is also estimating higher-order moments. Thus,

we propose an architecture to deal with this matter.

It is very common among researchers to use a whitening

�lter before the ICA algorithm itself. The reason is that

the whitening carries out a decorrelation between the in-

put signals. Then, the ICA work is reduced to estimate the

moments higher than two, with this, one gains in speed.

Here, we propose a di�erent reasoning. Instead of using

only second-order statistics, we suggest the use of a net-

work that substitutes the whitening by an ICA algorithm

itself. With this, we are not only estimating the second,

but also higher-order moments. We will see that this sim-

ple substitution implies in a much faster convergence.

The architecture includes other points to improve the

speed of convergence as shown in Fig. 1 . In resume, they

are given below.

4This derivation is carried out simply by substituting �k+1;i <

�k;i in (22).

� Pre-process the mixed signals by a high-pass �lter

operation that obeys (16). Later we will discuss why

this is important.

� Use a time-varying step-size for faster convergence as

in (25).

� Use a two-layer network. The two layers are cascaded

in series and the �rst layer is only used for conver-

gence. It is turned o� after a given number of itera-

tions.

� Use batch update. This is because the block size al-

ters the convergence of the algorithm.

x 1 2

ICA ICA1 2

H(s)

x x Output

B B

Figure 1: Block diagram of the proposed method.The sig-

nal is inputed into a high-pass �lter, then to the �rst layer

(ICA1), which is updated only up to a number of itera-

tions. The other layer (ICA2) is always \turned on".

6 Simulations

We have carried out simulations to test the validity of

the proposed method. The simulation consisted in mix-

ing actual ECG and electrode motion artifact (usually the

result of intermittent mechanical forces acting on the elec-

trodes) signals. We used signals from the MIT-BIH noise

stress test database, which are standard for testing ECG

analysers. Their power spectrum is shown in Fig. 2. No-

tice that the fundamental frequency of the ECG signal is

overlapped in frequency by the electrode artifact one. The

mixing was carried out using di�erent random matrices5.

The �rst layer (ICA1) in Fig.1 was turned o� after 1000

5By the equivariance property, we can conclude that this would

be equivalent to keeping the mixing matrix constant and changing

the weight initial value.



iterations. For all cases, we initialized the weight matrix

by the identity matrix. The �lter cuto� frequency was 2

Hz, and the weights were updated every block size of 50

iterations.
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Figure 2: Power spectrum of the two source signals: ECG

and respiration. Notice that the �rst harmonic of the ECG

signal is overlapped in frequency by the respiratory one.

7 Results

We used as �gure of merit to measure the quality of sep-

aration at the k-th iteration the following equation

}k = 100
X
j=1;2

(~c(k)j � 0:5);

~c(k)j = maxf
jci;j jX
i

jci;j j

g; for j = 1; 2: (27)

With this index, we are measuring how far the matrixC

is from the solutionDP at each iteration. WhenC = DP,

only one element at each column/line is di�erent from

zero. The index } will be 100 for the best case, and will

be null for the worst.

We have extensively run the proposed algorithm for dif-

ferent randomly mixed vectors. Fig.3 shows examples of

the results for three di�erent initial matrices A1, A2 and

A3. The red, blue and green lines correspond respectively

to the simulation carried out using:

� The proposed method as in Fig.1, with two ICA al-

gorithms an in (11) and �ltering;

� The same con�guration of the item above, but instead

of an ICA algorithm, we used a whitening one in the

�rst layer. This was realized by substituting the non-

linear function in (8) by y = erf(z) [6]

� One ICA algorithm as in (11).
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Figure 3: Values of } as in (27) for weight matrices A1,

A2 and A3. The labels are as follows: solid: ICA+ICA;

dotted: whitening+ICA; dashed: only ICA. \100" in-

dicates optimum separation. In the top line, no �ltering

was used while in the bottom one, �ltering was used for

the case of ICA+ICA and whitening+ICA. The ICA was

printed for the sake of comparison.

The index as in (27) was calculated for each simulation,

ant they are shown in Fig.3. The signals recovered by

the proposed network are shown in Fig.4. The \recovered

signals" were obtained after normalizing the weights as in

(12).
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Figure 4: An example of the original, mixed and re-

covered signal by the proposed network. In this case,

A = [11; 0:91]

8 Discussion

By looking at Fig.3 we can take the following conclusions:

� The �ltering is important in order to have less vari-

ance after convergence. This is because the lower

frequency signal (trend) was removed. The trend is

usually accounted in the literature as non-stationary

mean.

� The two-layer ICA network performed better in gen-

eral than the network with pre-whitening. While for

matrix A3 as in the top row of Fig.3, the whitening

showed a slightly better performance, for the with

�ltering case, as in the bottom rows, the two-layer

network outperformed the two others.

Another point that should be emphasized is that of the

adaptive step size. When we started using ICA, the great-

est problem in our point of view was that of step-size.

Since we wanted a fast convergence, we had to �x the

step-size at some upper value, otherwise the algorithm

would not converge. Therefore, for these ECG and elec-

trode noise data, we found heuristically an upper bound

of 2 � 10�4 for the learning rate. We compared then this

learning rate with the adaptive one, derived here. Fig. 5

shows this result. We can see that the self-adaptive learn-

ing rate allowed a much faster learning, without diverging.
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Figure 5: Values of } as in (27) for weight matrices A1,

A2 and A3, as in Fig. 4. The labels are as follows:

solid: ICA with adptive learning rate; dotted: ICA with

a constant learning rate of 2 � 10�4; dashed: ICA with

a constant learning rate of 2� 10�5.

Some words are necessary about the two-layers network.

Some works, e.g., [7], [16] have proposed to carry out

whitening before the ICA processing in order to orthogo-

nalize the input components. In the same way, we have

used the �rst layer to force the algorithm to search for

independent components. We argue, however, that the

cascading two ICA algorithms is a stronger principle be-

cause the �rst layer looks for an independent rather than

an orthogonal solution. Contrary to whitening, that uses

only second order statistics, ICA makes also use of higher

order moments. This can be observed in Fig.3, where �l-

tering was used and the data is stationary. By looking at

the red line, we can see that the the convergence with two-

layers was much better than that with whitening which, as

with one ICA layer only, sometimes did not converge.

Probably the reader is asking why we did not use the

two layers in the whole trajectory, but rather, we switched

it o� after some iterations. We carried it out, but the vari-

ance after convergence for such con�guration was higher.

Therefore, roughly speaking, the �rst layer works as a

propulsion to put the algorithm in the way to converge to

one of the solutions C=DP.



9 Conclusions

In this work, we proposed an architecture to blindly sep-

arate linearly mixed signals, based on the independent

component analysis principle. The architecture consisted

of a high-pass �lter, a two-layer network based on ICA

algorithm and a self-adaptive step-size. The self-adaptive

step-size was theoreticaly derived from the mean behavior

of the output signal.

The proposed network composed of two ICA algorithms

converged faster than the one composed of whitening plus

an ICA algorithm, where whitening stands for an algo-

rithm designed to orthogonalize the input signals. We ar-

gued that the two-layer network of ICA algorithm behaves

better because the �rst layer is searching for an indepen-

dent solution, rather than an orthogonal. This conclusion

was con�rmed by simulations. The proposed self-adaptive

step-size also leaded to a fast convergence, though with a

greater error.
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