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Abstract

This paper deals with the problem of how to control the movement of a simple robot which has the goal to
reach a specified target within finite time and to stay within some pre-defined distance to it. The system's
design proposed is as minimal as possible and reflects the basal reflex arc as observed in biological systems.
The dynamics is due to a multiplicatively modified random walk. In particular only one simple, omni-
directional sensor is used so that the robot does not receive any directional information about the target. The
mobile robot shows a reliable and fast homing behavior towards a defined area and stays in some given
neighborhood of it. The computational effort needed is seen to be minimal.

Keywords: mobile simple robot, system's control, stochastic approach, low-dimensional control, simple
and fast algorithm.

Introduction
The motion of simple animals, such as protozoa, bacteria, up to insects, is commonly regarded as a kind of
random walk. Correspondingly, diffusion-reaction like processes have been considered in order to describe
their fundamental motion patterns up to the emergence of grouping behavior (for further reading see [6]).
Moreover, the assumption of random movement has made thermodynamic considerations a natural tool for
analyzing systemic properties. The assumption of random movement certainly is reasonable, when
considering a mobile system having a large number of degrees of freedoms, but also smaller systems with
quasi-periodic or chaotic behavior [3].

We followed this idea of a random walk as a simple model for the motion of an agent. As a technical
example, one may think about a simple mobile robot, which can move in a simple environment, for example
an infinite, smooth plane, having a motor E of an appropriate number of degrees of freedom. According to
classical mechanics, its spatial state is given by its spatial coordinates Q ∈∈∈∈ ℜℜℜℜd, d = 2,3 and its momentum
P ∈∈∈∈ ℜℜℜℜd. The action of its motor is to change its spatial state due to
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where τ ∈∈∈∈ ℜℜℜℜ is some scaling constant and D(α) denotes a rotation of the momentum around some randomly
chosen angle α ∈∈∈∈ [ 0, 2 π ]. The corresponding dynamics simply is a random walk in ℜℜℜℜd.

As the agent's sensory pole S, we considered an omni-sensor, which is sensitive to light (of some frequency).
According to the intensity measured, the sensor will produce some electrical signal νννν, which is supposed to be
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transferred to the motor along the pathway S  →→→→ E. Note that accordingly the sensory signal induced does not
contain any directional information.
The motor can be thought to be either autonomous or dependent: if autonomous, its activity does not depend
on the signal coming from the sensor (det D(α) is independent of the sensory signal νννν). But if the motor is
dependent, det D(α) may be some function of νννν. For simplicity, it is assumed that the absolute value of the
robot's velocity is constant, i.e. independent of νννν, and the effector action exclusively consists in changing the
direction of the momentum randomly.

As our key assumption, we assume that the agent has an internal component I whose states are called the
internal states of the agent. The role of internal state, essential variables, was already mentioned by R.W.
Ashby [1,2]. A simple model for the adaptive regulation of cells by modulation of sensitivity was analyzed in
[7]. More general considerations of the biological background can be found in [8].

Receptive signals are supposed to affect the agent's internal state according to some function g, so that for
each position Q ∈∈∈∈ ℜℜℜℜd corresponds an internal state x = g(Q) ∈∈∈∈ X. Let Q' denote the agent's next spatial
position due to the dynamics defined above. Then the internal state x' corresponding to this new position is a
function of the coordinates (Q, P). As such the evolution of the agent's internal state is related to its spatial
movement.

Further, we assume that there exists a set Y ⊂ X of "essential" internal states, which is called the "homeostatic
range" of the agent. The homeostasis condition is that during its dynamics, the internal state of the agent has
to be kept close to this homeostatic range. As the distance measure, define the distance between the internal
state x ∈ X and the homeostatic range Y ⊂ X, i.e. d(x, Y) = 0 if and only if x ∈ Y, i.e. if the internal state is
homeostatic. A direction P is regarded as "GOOD", if the internal state related to the new position Q' is closer
to the homeostatic range than that related to the former position Q. This "weight" is formally defined as:

Suppose that the actual position of the agent is (Q,P). Then define the forward cone

where 〈 , 〉 denotes the ordinary the scalar product on ℜℜℜℜd and 0 < A < P^2. Obviously, A is related to the
opening "angle" of the cone. Analogously, K- is defined by the property - P^2 < 〈p, P〉 < - A. The modified
model then is:

where τ has the same meaning as before, but the rotation angle α is randomly chosen from the interval
[- arccos(A/P2), arccos(A/ P2)].

In words: the agent proceeds moving in its former direction, P' ∈ K+ if this direction is GOOD, otherwise the
movement of the robot is reversed, P' ∈ K-. The random variable α represents the "internal noise" of the
robots itself in that its velocity is only determined up to some extent, represented by A. If A = P2, the
dynamics is completely deterministic, i.e. the robot either maintains or precisely reverses its former direction.

The mapping (3) does not represent a diffusion process of Langevin type.To induce noise to a (deterministic)
system, a Langevin force term is commonly added, which has to fulfill certain stochastic properties (vanishing
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average and δ-correlation). In contract, the modulation of the random walk in our approach is {\em
multiplicative}. By comparing the two functions (1) and (2), one immediately sees that

Therefore, Fc can not be written as a random walk F to which an external driving force is superimposed. In
fact, the dynamics of the agent may be regarded as a random dynamics in a gradient field. But this gradient
field is internally defined, rather than externally: By the mapping g: U → X, the external signaling space U is
mapped to an internal space X, on which the "force term" is defined. Therefore, this force can be regarded as
being "generated" by the system itself.

Numerical results
In the following, only some particular properties of the dynamics of the so-defined system will be considered.
The model proposed represents an extension and generalization of the approach mentioned by O.E. Holland
and C.R. Melhuich [5]. A mathematical analysis of the mapping including stability of the invariant set and the
discussion of ergodicity are beyond the scope of this work. The main aim of this part is to very roughly
compare the random walk F with the "weighted" random walk Fc.

       

Figure 1: Phaseplot of the weighted random motion of the agent and the time-development of its spatial
distance from the source, due to equation 3. The agent's initial position is far away from the source.

The above figures display the spatial motion of an agent due to the mapping Fc, being subject to a signaling
field emitted by some source, which is located inside the circle. The simulation was done for a very simple
model: as the signaling source, we defined a light bulb of constant intensity, so that the signaling field emitted
is proportional to the field of light intensity. Accordingly, the strength of the receptive signals was considered
as a monotonously decreasing function of the spatial position of the agent. The action of its effector, i.e. the
motor, was assumed to be autonomous, leaving the velocity unchanged, det D(α) = 1. Moreover, the action of
the receptive signals on the internal state was assumed to be strictly monotonous, i.e. the mapping g was
assumed to be strictly monotonous. As such, the disc displayed below reflects the homeostatic range of the
agent in the spatial domain. In the simulations, the disc was assumed to have a finite extension, 0 < d < ∝.

In contrast to a pure random walk, the trajectory due to Fc can be seen composed by parts of perturbed
straight lines, so that its motion becomes directed towards the target in the mean. First of all, it is clear that no
real straight lines can occur because of the random choice of the rotation matrix. But apart from this, the
segments have to be lines because of our definition of the weight function, which roughly says that a certain
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direction is maintained under certain conditions. The appearance of "straight" trajectories also can not be
expected in pure random walks.

      

Figure 2: Phaseplot of the weighted random motion of the agent and the time-development of its spatial
distance from the source, due to equation 3. The agent's initial position is close to the source.

As well-known, purely diffusive processes in the plane have the mixing property according to which each
trajectory of a purely diffusive system will meet any arbitrary small neighborhood of every point in the plane
after a sufficient long time. Therefore, "homing behavior", i.e. reaching the disc, is trivially achieved by a
random-walk dynamics. In fact, as apparent from the Figure 2, the agent reaches the source after a couple of
iteration steps, its time development being due to Fc. For the same reason, a "purely" diffusive agent will
leave every disc of finite radius d after some time t ≈ d-2. Mapping (3) can be seen not to be mixing, in the
opposite: According to the dynamics defined by Fc, the agent will not escape from a finite neighborhood of
the target, but will remain in some finite distance of the disc for all time. Actually, the spatial trajectory of the
agent shows an oscillation around the border, its amplitude being dependent on the initial velocity of the
agent and the time scale parameter. This, in fact, constitutes a major difference between the pure random walk
F and our "weighted random walk" Fc.

Conclusion
The model proposed represents a multiplicative modulation of a simple random walk: At each time-step, the
direction is chosen randomly from a forward- or a backward cone according to the actual direction, due to the
value of a weight function.

The forcing term is internal, rather than external, i.e. no external force field is superimposed. This "weighted"
random walk exhibits dynamical aspects, which fundamentally differ from those of normal random walks:

1.) The dynamics of the model proposed is not "mixing", but establishes a motion, which converges to some
given target.

 2.) The mean direction is directed towards the target.

The computational effort needed is seen to be minimal and, in particular, does not include any "orientation",
i.e. no direct directional information is present. This process of "weighted diffusion" may be important as a
framework for describing and analyzing the motion pattern of simple animals.
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