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Abstract-This paper proposes a method of "blind
separation" which extracts non-stationary signals (e.g.,
speech signals, music) from their convolutive mixtures.
The function is acquired by modifying a network's
parameters so that a cost function takes the minimum at
any time.  The cost function is the one introduced by
Matsuoka et al. [15].  The learning rule is derived from
the natural gradient [1] minimization of the cost
function.  The validity of the proposed method is
confirmed by computer simulation.

1. Introduction
  This paper deals with blind separation of non-
stationary signals.  Blind separation is a signal
processing technique that extracts the original signals
(source signals) from their mixtures observed by
sensors.  An attractive feature of blind separation is that
the source signals can be recovered without strong
assumption about the source signals or the mixing
process, i.e., the transfer function between signal
sources and sensors.  The only a priori knowledge is,
basically, that the source signals are mutually
statistically independent.  Therefore, this technique can
be applied to various fields, e.g., speech recognition,
image processing, medical measurement, etc.

Since Herault et al. [9,10] presented the problem of
blind separation, various methods for blind separation
have been proposed.  In those methods, as a model of
the transfer function between signal sources and
sensors, there exit two types of mixing models:
instantaneous mixture and convolutive mixture.
Instantaneous mixture is a mixing model which does not
take into account any delays, whereas convolutive
mixture involves some delays in the mixing process.
This paper deals with a convolutive mixture in the
mixing process.  That is, we consider the problem of
how the source signals can be separated from their
convolutive mixtures.
  If the transfer function between signal sources and
sensors is estimated, then the source signals can be
extracted by applying the inverse dynamics of the
transfer function to the observed signals.  Therefore, the
problem is to estimate the unknown transfer function (or
its inverse) by only using the observed signals.  The
conventional methods [1,3,8,14,17] stipulate that the
source signals are non-Gaussian, and utilize information
about whether the source signals are super-Gaussian or
sub-Gaussian.  In these methods, in order to implement
blind separation, the algorithms corresponding to the

statistical properties of the source signals (super- or sub-
Gaussian signals) must be selected by using the
observed signals.  However, it is difficult to accurately
estimate from the observed signals whether the source
signals are super- or sub-Gaussian signals because, in a
real world, there are a lot of random signals whose
statistical properties change with time [16].

In this paper, we assume that the source signals are
non-stationary signals (e.g., speech signals, music), and
propose a method using non-stationarity of the signals.
The proposed method does not require any additional
information about whether the source signals are super-
or sub-Gaussian.  We only make use of the second-order
moments of the observed signals.  Methods using
second-order moments for estimating the unknown
transfer function have been proposed by D. C. B. Chan
et al. [2] and S. V. Gerven et al. [6,7].  In [2] source
signals are assumed to be stationary signals, and their
method must use the same number of cross-correlation
data as the degree of freedom of the unknown transfer
function.  Our method, differently from that, uses only
one set of cross-correlation data.  The method proposed
in [6,7] can not deal with non-minimum phase systems.
  The method proposed in this paper estimates the
unknown transfer function by modifying the parameters
of an adaptive network.   The learning rule of the
network's parameters is derived from the natural
gradient [1] minimization of a cost function.  The
validity of the proposed method is confirmed by
computer simulation.  Simulation result will show that
our method can be applied to non-minimum phase
systems.

2. Source Signals
Suppose that random signals si(t) (i = 1,…,N; t = …,

-1,0,1,…) are generated by N mutually independent
sources.  Henceforth, these signals will be considered as
the source signals.  The source signals are mixed with
the following process, and their mixed signals xi(t) (i =
1,…,N) are observed by N sensors:

 xi(t) =∑
=

N

1j
∑
∞

−∞=k

aij(k)sj(t-k),  (i = 1,…,N) (1)

     = ∑
=

N

1j

a ij(z)sj(t), (2)

where a ij(z) = ∑
∞

−∞=k

aij(k)z-k is the transfer function from



the j-th input (source signal) to the i-th output (mixed
signal), and z-k is a delay operator, i.e., si(t)z

-k = si(t-k).
Equation (2) can be rewritten in vector notation as

x(t) = A (z)s(t), (3)
where x(t) = [x1(t),…,xN(t)]T, A (z) = [ a ij(z)], and s(t) =
[s1(t),…,sN(t)]T.  We refer to x(t) (or xi(t)) as observed
signal.

Our aim is to extract source signals from the observed
signals xi(t) (i = 1,…,N).  To this end, we make the
following assumptions.

Assumption 1  A (z) does not have poles or zeros on
the unit circle |z| = 1.

Assumption 2 si(t) (i = 1,…,N) are mutually
independent signals with zero
mean.

From Assumption 2, the auto-correlation matrix R(t,τ)
of s(t) becomes a diagonal matrix:

R(t,τ) = E[s(t) s(t-τ)T]
   = diag{E[s1(t)s1(t-τ)],…,E[sN(t)sN(t-τ)]}
   ≡ diag{r1(t,τ),…,rN(t,τ)} (4)

where diag{…} represents a diagonal matrix with the
diagonal element {…}, and E[x] is the ensemble
average of x.  The source signals si(t) (i = 1,…,N) are
assumed to be non-stationary signals, that is,

Assumption 3  For all τ, each ri(t,τ) (see eqn (4))
changes independently with time t.

3. Separation Process
An adaptive feedforward network (see Figure 1) is

used to separate the source signals from the observed
signals.  The input signals of the network are the
observed signals xi(t) (i = 1,…,N).  The network outputs
can be written as:

   x1(t)       b 11(z)             y1(t)
                    

    �������������� b 1N(z)       
�
    �
�

�����

b N1(z)�����     �

   xN(t)      b NN(z)              yN(t)

Fig. 1  Signal Separation Network

yi(t) = ∑
=

N

1j
∑

=

M

0k

bij(k)xj(t-k), (5)

    = ∑
=

N

1j

b ij(z)xj(t), (i = 1,…,N) (6)

where b ij(z) =∑
=

M

0k

bij(k)z-k (i, j = 1, …,N) represent

the transfer function between j-th input (observed
signal) and i-th output signal.  Eqn (6) can be rewritten
in vector notation as

y(t) = B (z)x(t), (7)

where y(t) = [y1(t),…,yN(t)]T and B (z) = [ b ij(z)] =

∑
=

M

0k

B(k)z-k, (B(k) = [bij(k)]).

  Substituting eqn (3) into eqn (7), we have

y(t) = B (z) A (z)s(t). (8)
When C(z) ≡ B 0(z) A (z) = D(z)P, the outputs of the
network become the filtered and permuted source
signals, i.e., s (t)=[ s 1(t),…, s N(t)]T = D(z)Ps(t).  Here,
P is an arbitrary permutation matrix, and D(z) is a
diagonal matrix expressed as

D(z) = diag{ ∑
∞

−∞=k

d1(k)z-k,…, ∑
∞

−∞=k

dN(k)z-k}.

s i(t) (i=1,…,N) can also be regarded as source signals,
because s i(t) (i = 1,…,N) are mutually independent
signals.  Therefore, our goal is now to find the
matrix B 0(z) satisfying C(z) = D(z)P.

4. Separation Method
When the mixing process is assumed to be an

instantaneous mixture, that is, x(t) = As(t), and s(t) is
non-stationary signal, then Matsuoka, Ohya, and
Kawamoto [15] showed that blind separation can be
achieved by minimizing the following cost function:

Q = 
2

1
{∑

=

N

1i

log E[yi(t)
2] � log det E[y(t)y(t)T]}   (9)

  In this paper, their method is extended to the case of
convolutive mixture by considering the following cost
function:

Q(t, B (z)) =
2

1
{∑

=

N

1i

log E[yi(t-L)2]

               � log det E[y(t-L)y(t-L)T]}     (10)
Note that the parameter L represents a delay.  In our
method, time t-L is regarded as t = 0.  Therefore, our
algorithm has access to both future and past values of
the observed signals, that is, {x(t),…,x(t-L+1)} and
{x(t-L-1),…,x(t-M)}, respectively.  Thanks to that, our
proposed algorithm can be applied to non-minimum
phase systems.  The function given by (10) evaluates
only one set of cross-correlation, E[yi(t-L)yj(t-L)] (i, j =
1,…,N; i ≠ j), and data outside that set, for example,
E[yi(t)yj(t-τ)] (i, j = 1,…,N; i ≠ j; ∀τ ) are not taken into
account.

Matrix B 0(z) (satisfying C(z) = D(z)P) is found by
minimizing the function Q(t, B (z)).  In order to
minimize the cost function (10) the natural gradient



algorithm [1] is used:
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     (k = 0,…,M)     (11)
where α is a small positive constant.

Calculating the right-hand side of eqn (11), we have
  ∆B(k) = αz-k{I � (diagE[y(t-L)y(t-L)T])-1

                   ×  E[y(t-L)y(t-L)T]} B (z)
                         (k = 0,…,M)      (12)
where diagX represents a diagonal matrix with the
diagonal elements of matrix X.
  In practice, E[y(t-L)y(t-L)T] is replaced by its
instantaneous value y(t- L)y(t-L)T:
   ∆B(k) = αz-k{I � (diagE[y(t-L)y(t-L)T])-1

                    ×  y(t-L)y(t-L)T} B (z)
                         (k = 0,…,M)      (13)
To estimate diagE[y(t-L)y(t-L)T], we use the following
moving average:

   φi(t) = βφi(t-1) + (1-β)yi(t-L)2

  (i = 1,…,N; 0 < β < 1)    (14)

Then, eqn (13) becomes
  ∆B(k) = αz-k{I � Φ(t)-1y(t-L)y(t-L)T} B (z),
                                           (k = 0,…,M)     (15)
where Φ(t) = diag{φ1(t),…, φN(t)}.  Eqns (14) and (15)
is used to update B(k) (k = 0,…,M).

Here, let us consider how to remove ambiguity of
parameters di(k) (i = 1,…,N; -∞ ≤ k ≤ ∞ ) in D(z).  In
our previous method [12,13], the ambiguity of
parameter di(k) in D(z) was removed by fixing the
diagonal element b ii(z) of matrix B (z) to z-L.  In this
paper, in order to remove the ambiguity of parameter
di(k) in D(z), the normalization of each row of B (z) is
implemented:

b ij(z)/bii(L)   (i, j = 1,…,N)

This normalization dose not influence the learning
algorithm (12) because even if the output signal y(t) is
multiplied by any nonzero constant, we can prove that
the value of the cost function Q(t, B (z)) does not
change.

5. Simulation Result
  We show an example to check the validity of the
proposed method.

Example: In this example, there are three sources (N =
3).  Source signals s1(t), s2(t), and s3(t) are the following
stationary Gaussian signal and two non-stationary
signals:

 s1(t) = u1(t),  s2(t) = η2(t)u2(t),  s3(t) = η3(t)u3(t)

where ui(t) (i = 1, 2, 3) are Gaussian white signals with
zero mean and unity variance, and η2(t), η3(t) are given
by η2(t) = 2sin(π/200)t, η3(t) = 2sin(π/500)t,
respectively.  The channel matrix A (z) was given as

A (z)

 = 
















+
++++

++

−−−−

−−−−

−−−−

2123

1211

2121

z5.0zz5.0z25.0

z4.04.0z2.0z4.01z3.04.0

z25.0z4.04.0z4.0z

The poles of A (z)-1 are -0.32-0.52I, -0.32+0.52I, 0.055-
0.24I, 0.055+0.24I, -0.67, and 5.19.  Therefore, A (z)-1

has one pole outside the unit circle |z| = 1, from which
we deduce that A (z) is a non-minimum phase system.
Parameters M of eqn (5) and L of eqn (15) were set to
16 and 8, respectively.  The parameters of the learning
algorithm were chosen as α = 0.00025 and β = 0.9.  The
initial values of bij(k) (k = 0,…,16; i, j = 1, 2, 3; i ≠ j),
bii(8) (i = 1, 2, 3), bii(k) (k = 0,…,16; k ≠ 8; i = 1, 2, 3),
and φi(t) were set to 0, 1, 0, and 1, respectively.

Figure 2 shows the elements cij(z) (i, j = 1, 2, 3) of the
matrix C(z)= B 0(z) A (z).  Each cij(z) is composed of 20
elements, that is,

cij(z) =∑
=

19

0k

cij(k)z-k,  (i, j = 1, 2, 3).

B 0(z) was found after 10000 iterations using our
learning algorithm.  Fig. 2 shows that the non-diagonal
elements cij(z) (i, j = 1, 2, 3; i ≠ j) are nearly equal to
zero.  Therefore, one can see that the proposed
algorithm could separate the source signals from their
convolutive mixtures.
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Fig. 2  The elements cij(z) (i, j = 1, 2, 3)

6. Conclusion
We have proposed a method of blind separation for

convolved non-stationary signals.  This method is an
extension of our previous one in [15] for the case of
convolutive mixture.

The simulation result has shown that our algorithm
of blind separation works well, even if the channel
matrix A (z) is a non-minimum phase filter.
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