
HOS Based Distintive Featuresfor Preliminary Signal Classi�ationMaiej P�dzisz and Ali MansourÉole Nationale Supérieure des Ingénieursdes Études et Tehniques d'Armement (ENSIETA),Laboratoire �Extration et Exploitation de l'Informationen Environnements Inertains� (E3I2), Brest, Frane,pedzisma�ensieta.fr, mansour�ensieta.frAbstrat. We onsider the problem of preliminary lassi�ation of dig-itally modulated signals. The goal is to simplify further signal analysis(synhronization, signal separation, modulation identi�ation and pa-rameters estimation) by making initial separation among the most knownlasses of signals. Proposed methodology is mainly based on Higher Or-der Statistis (HOS) of the distributions of instantaneous amplitude andfrequeny. The experimental results emphasize the performane of theproposed set of features.1 IntrodutionIn Communiation Intelligene (COMINT), knowledge of signal's frequeny stru-ture is essential to reognize underlying modulation type and measure its pa-rameters. Up to now, all frequeny synhronization algorithms onsider only onesignal, they need a big number of symbols and a long time to onverge. Thus,making a preliminary signal lassi�ation based on frequeny invariant features,will muh simplify further proessing, allowing appliations of signal-spei�synhronization, soure separation and modulation lassi�ation tehniques.In [1℄, authors presented empirial results in Blind Soure Separation (BSS)using overomplete Independent Component Analysis (ICA) representations.They demonstrated �delity of their algorithm in the ase of 2 mixtures of 3speeh signals. Separation of 2 audio soures from a single sensor is the subjetovered in [2℄. Proposed method generalizes the Wiener �ltering with GaussianMixture distributions and Hidden Markov Models. A time-frequeny �lteringbased on the Pseudo Wigner-Ville distribution is onsidered in [3℄. Performaneof the presented algorithm was validated using a mixture of 2 voie reordings.In [4℄, sparse fatorization approah with K-means lustering algorithm appliedto BSS problem is disussed. Provided results reveal the performane of the al-gorithm in ase of 10 fae images (6 mixtures), as well as 8 speeh signals (5mixtures). Authors of [5℄, derive algebrai means for ICA in the ase of unde-termined mixtures. Their results are based on the struture of the fourth-orderumulant tensor. Sixth-order statistis and the virtual array onept are ad-dressed in [6℄. It was shown that their algorithm an be used to inrease theC.G. Puntonet and A. Perieto (Eds.): ICA 2004, LNCS 3195, pp. 1158-1164, 2004©Springer-Verlag Berlin Heidelberg 2004



HOS Based Distintive Features for Preliminary Signal Classi�ation 1159e�etive aperture of an antenna array, and so to identify the mixture of moresoures than sensors. The ase of binary soure separation is overed in [7℄ and[8℄. Their algorithm uses the struture of the probability distributions of theobserved data. Simulations showed that the method an suessfully separate atleast up to 10 binary soures at di�erent noise levels.On the other hand, modulation reognition algorithms ([9℄, [10℄, [11℄, [12℄)deal with the ases where some a priori information is available (arrier fre-queny, symbol timing, ...) and there is only one signal in additive noise. Inthis ontribution, we try to �ll the gap between synhronization & modulationreognition methods, and soure (signal) separation algorithms based on oneobservation (undetermined problem). Using the proposed set of features, we areable to distinguish among the most ommon known signal types, and so, hoosethe appropriate methodology for further signal proessing.2 Signal Models2.1 Mono-Component SignalLet's assume working in the onditions where signal's arrier frequeny is notknown. The reeived omplex baseband signal (after imperfet demodulation)an be expressed as a sum of two unorrelated omponents:
s(t) = Ac(t)e

j(ωrt+Θr) + n(t) (1)where Ac(t) is a signal omplex envelope, ωr is a residual frequeny, Θr is a phaseof the residual frequeny, and n(t) orresponds to a zero-mean, additive whitegaussian omplex noise.Using the onept of the omplex envelope, we an express any linearly mod-ulated signal as:
Ac(t) = A

∑

k

dkh(t − kT − τ), k ∈ {1, 2, . . . , K} (2)where A is a onstant amplitude, dk desribe signal onstellation, h(t) is a pulseshaping funtion, T is a symbol duration, τ is an out-of-synhronization error(due to imperfet demodulation), and K is a number of available symbols. Forthe most known M-ary linear modulations (MASK � M-ary Amplitude ShiftKeying, MQAM � M-ary Quadrature Amplitude Modulation, MPSK � M-aryPhase Shift Keying), we have:
dMASK

k = ak, ak ∈ {±(2m − 1) : m = 1, 2, . . . , M/2} (3)
dMQAM

k = ak + jbk, ak, bk ∈ {±(2m− 1) : m = 1, 2, . . . , log2(M) − 2} (4)
dMPSK

k = ejϕk , ϕk ∈ { 2π
M (m − 1) : m = 1, 2, . . . , M} . (5)In the nonlinear ase (MFSK � M-ary Frequeny Shift Keying), we an write:

Ac(t) = Aej
∑

k
dk∆ω(t−kT−τ)h(t−kT−τ), k ∈ {1, 2, . . . , K} (6)



1160 Maiej P�edzisz and Ali Mansourwhere ∆ω is a frequeny deviation, and dk an be expressed as:
dMFSK

k ∈ {±(2m − 1) : m = 1, 2, . . . , M/2} . (7)It is assumed that variables ak, bk and ϕk in equations (3), (4) and (5), aswell as dk in (7) are independent and identially distributed (i.i.d. proesses).It is assumed also that all modulation states are equiprobable (whih is alwaysaomplished when soure oding is applied) and the pulse shaping funtion h(t)is retangular.2.2 Multi-Component SignalTaking into onsideration the mono-omponent model of a linear modulation((1) and (2)), we an write a general formula for a multi-omponent signal as:
S(t) =

L
∑

i=1

Aci
(t)ej(ωri

t+Θri
) + ni(t)

=

L
∑

i=1

Ai

∑

k

dki
hi(t − kTi − τi)e

j(ωri
t+Θri

) + n(t)

(8)where L is a number of mono-omponent signals and n(t) is a term whih ab-sorbed all noise ontributions ni(t).In COMINT appliations, it is often su�ient to onsider: there are twosignals in the mixture (L = 2), and applied modulation types are MPSK. Addi-tionally, we assume that signal amplitudes are idential (A1 = A2)1. We are notonsidering prior knowledge about:� residual frequenies and phases (ωri
and Θri

);� symbol durations (Ti);� synhronization errors (τi).3 Distintive Features3.1 Preliminary ResultsBased on the signal models (1) and (8), we an rewrite the reeived signal as:
sr(t) = p(t) + jq(t) = Ai(t)e

jφi(t) (9)where p(t) and q(t) are in-phase and quadrature omponents, Ai(t) is an instan-taneous amplitude and φi(t) is an instantaneous phase. Then, we an de�ne:
Ai(t) = |sr(t)|, φi(t) = arg{sr(t)}, ωi(t) = dφi(t)

dt =
p(t)

dq(t)
dt −q(t)

dp(t)
dt

p2(t)+q2(t) (10)1 General ase A1 6= A2 will be addressed elsewhere.



HOS Based Distintive Features for Preliminary Signal Classi�ation 1161where ωi(t) is an instantaneous frequeny. In general, ωi(t) is de�ned using theonept of the analyti signal [13℄.It is well known that the probability density funtion (PDF) of Ai of anyMPSK/MFSK signal an be expressed in terms of its onstant amplitude A (Eq.(2)) and noise variane σ2
n (Eq. (1)) by means of Rie distribution [14℄:

fAi
(Ai; A, σ2

n) =
Ai

σ2
n

e
−

A
2
i
+A

2

2σ2
n I0

(

AiA

σ2
n

)

, Ai > 0 (11)where I0(x) is the modi�ed Bessel funtion of order 0.If A = 0 (NOISE), then PDF of Ai beomes Rayleigh. For the MQAM lassof signals, we an write the orresponding PDF as a mean of fAi
(Ai; Al, σ

2
n) overall distintive amplitudes Al.The seond distribution whih an be onsidered as distintive in signal las-si�ation is the PDF of ωi [15℄. For a single-arrier modulation (MPSK, MQAM),we have:

fωi
(ωi; A, σ2

n) = ϑ−1v
− 3

2

i e
− A

2

2σ2
n 1F1

(

3

2
, 1;

A2

2σ2
nvi

) (12)where vi = 1 + ω2
i /ϑ2, ϑ2 =

∫ +∞

−∞
ω2

i γ(ω) dω/
∫ +∞

−∞
γ(ω) dω, γ(ω) is a powerspetral density (PSD) of noise, and 1F1(α, β; x) is a on�uent hypergeometrifuntion de�ned as:

1F1(α, β; x) =

+∞
∑

k=0

Γ (α + k)Γ (β)xk

Γ (α)Γ (β + k)k !
, β 6= 0, −1, −2, . . . (13)It is obvious that in the multi-arrier ase (MFSK), the PDF of ωi an beexpressed as a mean over all distintive (arrier) frequenies.Finally, when A ≫ σn, we an approximate both distributions by the Gaus-sians [13℄, [15℄, [16℄:

fAi
(Ai; A, σ2

n) ≈ N (Ai; A, σ2
n), fωi

(ωi; A, σ2
n) ≈ N (ωi; 0, Bσn

2
√

3A
) (14)where N (x; µ, σ2) , 1

σ
√

2π
exp

[

− (x−µ)2

2σ2

], and B is a noise e�etive bandwidth.3.2 Features ExtrationThe main objetive in preliminary signal lassi�ation is to �nd a set of har-ateristis whih allows distintion among di�erent lasses of signals. Based ondistributions of Ai and ωi, we an extrat normalized umulants [17℄ of order 3
γ3 (skewness) and 4 γ4 (kurtosis) as:

γ3 =
κ3

κ
3/2
2

, γ4 =
κ4

κ2
2

(15)



1162 Maiej P�edzisz and Ali Mansourwhere umulants κr and orresponding moments mr are de�ned by:
κ2 = m2 − m2

1 (16)
κ3 = m3 − 3m2m1 + 2m3

1 (17)
κ4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 (18)
mr =

∫

+∞

−∞

xrf(x) dx . (19)Other sets of harateristis an be obtained by using Renyi's quadrati en-tropy [18℄:
H2 = − log

[
∫ +∞

−∞

f2(x) dx

] (20)and by solving a polynomial regression on the logarithm of a PDF:
log(f(x)) ≈

∑

k

akxk. (21)3.3 Features Seletion & Dimensionality RedutionIt is obvious that limiting the number of features will make learning and testingfaster and demanding less memory. Aside from this, feature spae of a lowerdimension may enable more aurate lassi�ers for a �nite learning set.Based on the harateristis presented in the previous setion, experimentshave been onduted to hoose the most disriminative set of features:� features based on Ai: γA
3 , γA

4 , HA
2 , aA

3 , aA
2 , aA

1 , aA
0 (3-rd degree polynomialis su�ient to desribe asymmetry and �atness of onsidered distributions);� features based on ωi: γω

4 , Hω
2 , aω

4 , aω
2 , aω

0 (PDF of ωi is symmetrial aboutthe mean, so all the features based on asymmetry were eliminated).One they have been seleted, one an apply the Linear Disriminant Analysisto verify the importane of hosen features. Using the Fisher's riterion [19℄:
JF = tr{T} = tr{S−1

w Sb} (22)where Sw is the within-lass ovariane matrix (the sum of ovariane matri-es omputed for eah lass separately), and Sb is the between-lass ovarianematrix (the ovariane matrix of lass means), we found:� all seleted features are of equal importane � among di�erents ombinationsof features, the whole set is the most disriminative;� features from Ai are best to separate between lasses of signals with symmet-ri Ai PDF (MPSK, MFSK) and asymmetri (NOISE, MQAM and MIX-TURE);� features from ωi are best to separate between lasses of signals with unimodal
ωi PDF (MPSK, MQAM and MIXTURE) and multimodal (MFSK).



HOS Based Distintive Features for Preliminary Signal Classi�ation 1163It should be noted, that using eigenvetors of matrix T, it is possible toredue dimensionality of the feature vetor
x = [γA

3 , γA
4 , HA

2 , aA
3 , aA

2 , aA
1 , aA

0 , γω
4 , Hω

2 , aω
4 , aω

2 , aω
0 ]T (23)by means of linear transformation:

y = Wx (24)where eigenvetors orresponding to largest eigenvalues of T form the rows ofthe transformation matrix W.4 SimulationsTo evaluate the performane of the proposed set of features, extensive simu-lations were onduted on the signals: NOISE, MPSK (2, 4 and 8), MFSK (2and 4), MQAM (16 and 32) and MIXTURE (2xBPSK, 2xQPSK and BPSK &QPSK). All signals were omposed of 512 samples, 5 samples per symbol, 1000di�erent realizations. Signal to Noise Ratio (SNR) was varying from 0 dB upto 30 dB. The residual frequenies ωri
, the orresponding phases Θri

, as wellas the symbol timings Ti, were hosen randomly aording to Nyquist samplingtheorem. Corresponding results (SNR = 5 dB) are shown in Fig. 1.
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Fig. 1. Signals in a 2D spae after dimensionality redution (SNR = 5 dB).
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