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Abstract. We consider the problem of preliminary classification of dig-
itally modulated signals. The goal is to simplify further signal analysis
(synchronization, signal separation, modulation identification and pa-
rameters estimation) by making initial separation among the most known
classes of signals. Proposed methodology is mainly based on Higher Or-
der Statistics (HOS) of the distributions of instantaneous amplitude and
frequency. The experimental results emphasize the performance of the
proposed set of features.

1 Introduction

In Communication Intelligence (COMINT), knowledge of signal’s frequency struc-
ture is essential to recognize underlying modulation type and measure its pa-
rameters. Up to now, all frequency synchronization algorithms consider only one
signal, they need a big number of symbols and a long time to converge. Thus,
making a preliminary signal classification based on frequency invariant features,
will much simplify further processing, allowing applications of signal-specific
synchronization, source separation and modulation classification techniques.

In [1], authors presented empirical results in Blind Source Separation (BSS)
using overcomplete Independent Component Analysis (ICA) representations.
They demonstrated fidelity of their algorithm in the case of 2 mixtures of 3
speech signals. Separation of 2 audio sources from a single sensor is the subject
covered in [2]. Proposed method generalizes the Wiener filtering with Gaussian
Mixture distributions and Hidden Markov Models. A time-frequency filtering
based on the Pseudo Wigner-Ville distribution is considered in [3]. Performance
of the presented algorithm was validated using a mixture of 2 voice recordings.
In [4], sparse factorization approach with K-means clustering algorithm applied
to BSS problem is discussed. Provided results reveal the performance of the al-
gorithm in case of 10 face images (6 mixtures), as well as 8 speech signals (5
mixtures). Authors of [5], derive algebraic means for ICA in the case of unde-
termined mixtures. Their results are based on the structure of the fourth-order
cumulant tensor. Sixth-order statistics and the virtual array concept are ad-
dressed in [6]. It was shown that their algorithm can be used to increase the
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effective aperture of an antenna array, and so to identify the mixture of more
sources than sensors. The case of binary source separation is covered in [7] and
[8]. Their algorithm uses the structure of the probability distributions of the
observed data. Simulations showed that the method can successfully separate at
least up to 10 binary sources at different noise levels.

On the other hand, modulation recognition algorithms ([9], [10], [11], [12])
deal with the cases where some a priori information is available (carrier fre-
quency, symbol timing, ...) and there is only one signal in additive noise. In
this contribution, we try to fill the gap between synchronization & modulation
recognition methods, and source (signal) separation algorithms based on one
observation (undetermined problem). Using the proposed set of features, we are
able to distinguish among the most common known signal types, and so, choose
the appropriate methodology for further signal processing.

2 Signal Models

2.1 Mono-Component Signal

Let’s assume working in the conditions where signal’s carrier frequency is not
known. The received complex baseband signal (after imperfect demodulation)
can be expressed as a sum of two uncorrelated components:

s(t) = Ac() 100 4 m() (1)

where A.(t) is a signal complex envelope, w; is a residual frequency, ©, is a phase
of the residual frequency, and n(t) corresponds to a zero-mean, additive white
gaussian complex noise.

Using the concept of the complex envelope, we can express any linearly mod-
ulated signal as:

Aty =AY dph(t —kT —7),  ke{l,2,..., K} (2)
k

where A is a constant amplitude, dj describe signal constellation, h(t) is a pulse
shaping function, T" is a symbol duration, 7 is an out-of-synchronization error
(due to imperfect demodulation), and K is a number of available symbols. For
the most known M-ary linear modulations (MASK — M-ary Amplitude Shift
Keying, MQAM — M-ary Quadrature Amplitude Modulation, MPSK — M-ary
Phase Shift Keying), we have:

dlll/[ASK:aka ake{i(Qm_l); m=1, 2, ...,M/Q} (3)
Ay Y™ = ap + jbe, ak, by € {£@m—1): m=1,2,..., logy(M) -2} (4)
dl]z/[PSK:ejSDk, @kg{%(mfl) m:1;25"'7M}' (5)

In the nonlinear case (MFSK — M-ary Frequency Shift Keying), we can write:

Ac(t) = Aed Ly kAo (=kT=D)h(t=kT=7) =} c (1 9 K} (6)
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where A, is a frequency deviation, and dj can be expressed as:
TS e fd(om—1): m=1,2,..., M/2} . (7)

It is assumed that variables ag, by and ¢y in equations (3), (4) and (5), as
well as dj, in (7) are independent and identically distributed (i.i.d. processes).
It is assumed also that all modulation states are equiprobable (which is always
accomplished when source coding is applied) and the pulse shaping function h(t)
is rectangular.

2.2 Multi-Component Signal

Taking into consideration the mono-component model of a linear modulation
((1) and (2)), we can write a general formula for a multi-component signal as:

L
S(t) =" Ac, (£)e? @40 4y (1)
. (8)
= Z A; Z dki h; (t — KT; — Ti)ej(wri t+6x;) + n(t)
k

i=1

where L is a number of mono-component signals and n(t) is a term which ab-
sorbed all noise contributions n;(t).

In COMINT applications, it is often sufficient to consider: there are two
signals in the mixture (L = 2), and applied modulation types are MPSK. Addi-
tionally, we assume that signal amplitudes are identical (A; = A3)!. We are not
considering prior knowledge about:

— residual frequencies and phases (w;; and Oy,);
— symbol durations (T;);
— synchronization errors (7;).

3 Distinctive Features

3.1 Preliminary Results

Based on the signal models (1) and (8), we can rewrite the received signal as:
se(t) = p(t) + ja(t) = A1)’ (9)

where p(t) and ¢(t) are in-phase and quadrature components, A;(t) is an instan-
taneous amplitude and ¢;(t) is an instantaneous phase. Then, we can define:

dq(t) dp(t)

] ) =g —at) =5~
Ait) = [s: ()], di(t) = arg{si(t)}, wi(t) = 24 = BodL_tndi (10)

! General case A1 # Ay will be addressed elsewhere.
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where wi(t) is an instantaneous frequency. In general, w;(t) is defined using the
concept of the analytic signal [13].

It is well known that the probability density function (PDF) of A; of any
MPSK/MFSK signal can be expressed in terms of its constant amplitude A (Eq.
(2)) and noise variance o2 (Eq. (1)) by means of Rice distribution [14]:

AZ+a2

fa,(As; A02) = %e 208 <AiA) , A; >0 (11)

2
n On

where Ip(z) is the modified Bessel function of order 0.

If A =0 (NOISE), then PDF of A; becomes Rayleigh. For the MQAM class
of signals, we can write the corresponding PDF as a mean of f4,(A;; A;,02) over
all distinctive amplitudes A;.

The second distribution which can be considered as distinctive in signal clas-
sification is the PDF of w; [15]. For a single-carrier modulation (MPSK, MQAM),

we have:

_3 A2 3 A?
T de) =R (J )
where v; = 1 + w?/9%, ¥? = f_tf: dw/f w)dw, v(w) is a power

spectral density (PSD) of noise, and 1F1( B; x) is a conﬂuent hypergeometric
function defined as:

(a+ k)T (B)zF
1F1 Zm, 5# 0, *1, *2, (13)

It is obvious that in the multi-carrier case (MFSK), the PDF of w; can be
expressed as a mean over all distinctive (carrier) frequencies.

Finally, when A > o,,, we can approximate both distributions by the Gaus-
sians [13], [15], [16]:

fAi(Ai; A,O’i) %N(Ala A,O’i), fwl(wla A g ) N(wh 05 QBﬁ) (]‘4)

where N (z; p,0?) £ m}% exp [7%}, and B is a noise effective bandwidth.

3.2 Features Extraction

The main objective in preliminary signal classification is to find a set of char-
acteristics which allows distinction among different classes of signals. Based on
distributions of A; and wi, we can extract normalized cumulants [17] of order 3
~3 (skewness) and 4 ~, (kurtosis) as:

K3 R4

_ fs _fa 15
WESm g (15)
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where cumulants x, and corresponding moments m,. are defined by:

Ko = Mg — mf 16
17

18
19

K3 = m3 — 3mamq + Qmi’

K4 = my — dmgmq — 3m§ + 12m2m% — Gmil

/j:zrf(:c) dx .

my

(16)
(17)
(18)
(19)

Other sets of characteristics can be obtained by using Renyi’s quadratic en-
tropy [18]:

Hy = —log [ / " @ dx} (20)

— 00

and by solving a polynomial regression on the logarithm of a PDF:

log(f(x) ~ 3 axa®. (21)
k

3.3 Features Selection & Dimensionality Reduction

It is obvious that limiting the number of features will make learning and testing
faster and demanding less memory. Aside from this, feature space of a lower
dimension may enable more accurate classifiers for a finite learning set.

Based on the characteristics presented in the previous section, experiments
have been conducted to choose the most discriminative set of features:

— features based on A;: 4!, 74!, H3', a4, af', af', af' (3-rd degree polynomial

is sufficient to describe asymmetry and flatness of considered distributions);
— features based on wi: vy, Hy, af, a¥, af (PDF of w; is symmetrical about
the mean, so all the features based on asymmetry were eliminated).

Once they have been selected, one can apply the Linear Discriminant Analysis
to verify the importance of chosen features. Using the Fisher’s criterion [19]:

Jp = tI‘{T} = tr{S;lsb} (22)

where S,, is the within-class covariance matrix (the sum of covariance matri-
ces computed for each class separately), and S; is the between-class covariance
matrix (the covariance matrix of class means), we found:

— all selected features are of equal importance — among differents combinations
of features, the whole set is the most discriminative;

— features from A; are best to separate between classes of signals with symmet-
ric A; PDF (MPSK, MFSK) and asymmetric (NOISE, MQAM and MIX-
TURE);

— features from w; are best to separate between classes of signals with unimodal
w; PDF (MPSK, MQAM and MIXTURE) and multimodal (MFSK).
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It should be noted, that using eigenvectors of matrix T, it is possible to
reduce dimensionality of the feature vector

A A ppA A A A A
X = [73 » V4 aH2 a3, g, 41, g ,'yZ’,Hg’,aZ’,ag’,a‘a’]T (23)
by means of linear transformation:
y = Wx (24)

where eigenvectors corresponding to largest eigenvalues of T form the rows of
the transformation matrix W.

4 Simulations

To evaluate the performance of the proposed set of features, extensive simu-
lations were conducted on the signals: NOISE, MPSK (2, 4 and 8), MFSK (2
and 4), MQAM (16 and 32) and MIXTURE (2xBPSK, 2xQPSK and BPSK &
QPSK). All signals were composed of 512 samples, 5 samples per symbol, 1000
different realizations. Signal to Noise Ratio (SNR) was varying from 0 dB up
to 30 dB. The residual frequencies wy,, the corresponding phases ©,,, as well
as the symbol timings T;, were chosen randomly according to Nyquist sampling
theorem. Corresponding results (SNR = 5 dB) are shown in Fig. 1.

SNR =5dB

Y2

Y1

Fig. 1. Signals in a 2D space after dimensionality reduction (SNR = 5 dB).
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5

Conclusion

It is evident that selected set of features is very efficient even for low SNR.
Perfect classification can be obtained for the classes NOISE, MPSK and MFSK
for SNR > 5 dB, however distinction between MQAM and MIXTURE is far
from being "sufficient enough”.

Although classification in a 2D space was used for visualization purposes, one

should not limit himself during constructing a final classifier. Adding another set
of characteristics (based for example on Time-Frequency Distributions (TFD)),
may be more attractive in more than 2 dimensions. Also, making classifier hier-
archical or using some nonlinear mappings (MMI [20], NPCA [21]), may increase
separability of the classes. These topics will be covered in a future work.
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