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t. We 
onsider the problem of preliminary 
lassi�
ation of dig-itally modulated signals. The goal is to simplify further signal analysis(syn
hronization, signal separation, modulation identi�
ation and pa-rameters estimation) by making initial separation among the most known
lasses of signals. Proposed methodology is mainly based on Higher Or-der Statisti
s (HOS) of the distributions of instantaneous amplitude andfrequen
y. The experimental results emphasize the performan
e of theproposed set of features.1 Introdu
tionIn Communi
ation Intelligen
e (COMINT), knowledge of signal's frequen
y stru
-ture is essential to re
ognize underlying modulation type and measure its pa-rameters. Up to now, all frequen
y syn
hronization algorithms 
onsider only onesignal, they need a big number of symbols and a long time to 
onverge. Thus,making a preliminary signal 
lassi�
ation based on frequen
y invariant features,will mu
h simplify further pro
essing, allowing appli
ations of signal-spe
i�
syn
hronization, sour
e separation and modulation 
lassi�
ation te
hniques.In [1℄, authors presented empiri
al results in Blind Sour
e Separation (BSS)using over
omplete Independent Component Analysis (ICA) representations.They demonstrated �delity of their algorithm in the 
ase of 2 mixtures of 3spee
h signals. Separation of 2 audio sour
es from a single sensor is the subje
t
overed in [2℄. Proposed method generalizes the Wiener �ltering with GaussianMixture distributions and Hidden Markov Models. A time-frequen
y �lteringbased on the Pseudo Wigner-Ville distribution is 
onsidered in [3℄. Performan
eof the presented algorithm was validated using a mixture of 2 voi
e re
ordings.In [4℄, sparse fa
torization approa
h with K-means 
lustering algorithm appliedto BSS problem is dis
ussed. Provided results reveal the performan
e of the al-gorithm in 
ase of 10 fa
e images (6 mixtures), as well as 8 spee
h signals (5mixtures). Authors of [5℄, derive algebrai
 means for ICA in the 
ase of unde-termined mixtures. Their results are based on the stru
ture of the fourth-order
umulant tensor. Sixth-order statisti
s and the virtual array 
on
ept are ad-dressed in [6℄. It was shown that their algorithm 
an be used to in
rease theC.G. Puntonet and A. Perieto (Eds.): ICA 2004, LNCS 3195, pp. 1158-1164, 2004
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tive aperture of an antenna array, and so to identify the mixture of moresour
es than sensors. The 
ase of binary sour
e separation is 
overed in [7℄ and[8℄. Their algorithm uses the stru
ture of the probability distributions of theobserved data. Simulations showed that the method 
an su

essfully separate atleast up to 10 binary sour
es at di�erent noise levels.On the other hand, modulation re
ognition algorithms ([9℄, [10℄, [11℄, [12℄)deal with the 
ases where some a priori information is available (
arrier fre-quen
y, symbol timing, ...) and there is only one signal in additive noise. Inthis 
ontribution, we try to �ll the gap between syn
hronization & modulationre
ognition methods, and sour
e (signal) separation algorithms based on oneobservation (undetermined problem). Using the proposed set of features, we areable to distinguish among the most 
ommon known signal types, and so, 
hoosethe appropriate methodology for further signal pro
essing.2 Signal Models2.1 Mono-Component SignalLet's assume working in the 
onditions where signal's 
arrier frequen
y is notknown. The re
eived 
omplex baseband signal (after imperfe
t demodulation)
an be expressed as a sum of two un
orrelated 
omponents:
s(t) = Ac(t)e

j(ωrt+Θr) + n(t) (1)where Ac(t) is a signal 
omplex envelope, ωr is a residual frequen
y, Θr is a phaseof the residual frequen
y, and n(t) 
orresponds to a zero-mean, additive whitegaussian 
omplex noise.Using the 
on
ept of the 
omplex envelope, we 
an express any linearly mod-ulated signal as:
Ac(t) = A

∑

k

dkh(t − kT − τ), k ∈ {1, 2, . . . , K} (2)where A is a 
onstant amplitude, dk des
ribe signal 
onstellation, h(t) is a pulseshaping fun
tion, T is a symbol duration, τ is an out-of-syn
hronization error(due to imperfe
t demodulation), and K is a number of available symbols. Forthe most known M-ary linear modulations (MASK � M-ary Amplitude ShiftKeying, MQAM � M-ary Quadrature Amplitude Modulation, MPSK � M-aryPhase Shift Keying), we have:
dMASK

k = ak, ak ∈ {±(2m − 1) : m = 1, 2, . . . , M/2} (3)
dMQAM

k = ak + jbk, ak, bk ∈ {±(2m− 1) : m = 1, 2, . . . , log2(M) − 2} (4)
dMPSK

k = ejϕk , ϕk ∈ { 2π
M (m − 1) : m = 1, 2, . . . , M} . (5)In the nonlinear 
ase (MFSK � M-ary Frequen
y Shift Keying), we 
an write:

Ac(t) = Aej
∑

k
dk∆ω(t−kT−τ)h(t−kT−τ), k ∈ {1, 2, . . . , K} (6)
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y deviation, and dk 
an be expressed as:
dMFSK

k ∈ {±(2m − 1) : m = 1, 2, . . . , M/2} . (7)It is assumed that variables ak, bk and ϕk in equations (3), (4) and (5), aswell as dk in (7) are independent and identi
ally distributed (i.i.d. pro
esses).It is assumed also that all modulation states are equiprobable (whi
h is alwaysa

omplished when sour
e 
oding is applied) and the pulse shaping fun
tion h(t)is re
tangular.2.2 Multi-Component SignalTaking into 
onsideration the mono-
omponent model of a linear modulation((1) and (2)), we 
an write a general formula for a multi-
omponent signal as:
S(t) =

L
∑

i=1

Aci
(t)ej(ωri

t+Θri
) + ni(t)

=

L
∑

i=1

Ai

∑

k

dki
hi(t − kTi − τi)e

j(ωri
t+Θri

) + n(t)

(8)where L is a number of mono-
omponent signals and n(t) is a term whi
h ab-sorbed all noise 
ontributions ni(t).In COMINT appli
ations, it is often su�
ient to 
onsider: there are twosignals in the mixture (L = 2), and applied modulation types are MPSK. Addi-tionally, we assume that signal amplitudes are identi
al (A1 = A2)1. We are not
onsidering prior knowledge about:� residual frequen
ies and phases (ωri
and Θri

);� symbol durations (Ti);� syn
hronization errors (τi).3 Distin
tive Features3.1 Preliminary ResultsBased on the signal models (1) and (8), we 
an rewrite the re
eived signal as:
sr(t) = p(t) + jq(t) = Ai(t)e

jφi(t) (9)where p(t) and q(t) are in-phase and quadrature 
omponents, Ai(t) is an instan-taneous amplitude and φi(t) is an instantaneous phase. Then, we 
an de�ne:
Ai(t) = |sr(t)|, φi(t) = arg{sr(t)}, ωi(t) = dφi(t)

dt =
p(t)

dq(t)
dt −q(t)

dp(t)
dt

p2(t)+q2(t) (10)1 General 
ase A1 6= A2 will be addressed elsewhere.
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ation 1161where ωi(t) is an instantaneous frequen
y. In general, ωi(t) is de�ned using the
on
ept of the analyti
 signal [13℄.It is well known that the probability density fun
tion (PDF) of Ai of anyMPSK/MFSK signal 
an be expressed in terms of its 
onstant amplitude A (Eq.(2)) and noise varian
e σ2
n (Eq. (1)) by means of Ri
e distribution [14℄:

fAi
(Ai; A, σ2

n) =
Ai

σ2
n

e
−

A
2
i
+A

2

2σ2
n I0

(

AiA

σ2
n

)

, Ai > 0 (11)where I0(x) is the modi�ed Bessel fun
tion of order 0.If A = 0 (NOISE), then PDF of Ai be
omes Rayleigh. For the MQAM 
lassof signals, we 
an write the 
orresponding PDF as a mean of fAi
(Ai; Al, σ

2
n) overall distin
tive amplitudes Al.The se
ond distribution whi
h 
an be 
onsidered as distin
tive in signal 
las-si�
ation is the PDF of ωi [15℄. For a single-
arrier modulation (MPSK, MQAM),we have:

fωi
(ωi; A, σ2

n) = ϑ−1v
− 3

2

i e
− A

2

2σ2
n 1F1

(

3

2
, 1;

A2

2σ2
nvi

) (12)where vi = 1 + ω2
i /ϑ2, ϑ2 =

∫ +∞

−∞
ω2

i γ(ω) dω/
∫ +∞

−∞
γ(ω) dω, γ(ω) is a powerspe
tral density (PSD) of noise, and 1F1(α, β; x) is a 
on�uent hypergeometri
fun
tion de�ned as:

1F1(α, β; x) =

+∞
∑

k=0

Γ (α + k)Γ (β)xk

Γ (α)Γ (β + k)k !
, β 6= 0, −1, −2, . . . (13)It is obvious that in the multi-
arrier 
ase (MFSK), the PDF of ωi 
an beexpressed as a mean over all distin
tive (
arrier) frequen
ies.Finally, when A ≫ σn, we 
an approximate both distributions by the Gaus-sians [13℄, [15℄, [16℄:

fAi
(Ai; A, σ2

n) ≈ N (Ai; A, σ2
n), fωi

(ωi; A, σ2
n) ≈ N (ωi; 0, Bσn

2
√

3A
) (14)where N (x; µ, σ2) , 1

σ
√

2π
exp

[

− (x−µ)2

2σ2

], and B is a noise e�e
tive bandwidth.3.2 Features Extra
tionThe main obje
tive in preliminary signal 
lassi�
ation is to �nd a set of 
har-a
teristi
s whi
h allows distin
tion among di�erent 
lasses of signals. Based ondistributions of Ai and ωi, we 
an extra
t normalized 
umulants [17℄ of order 3
γ3 (skewness) and 4 γ4 (kurtosis) as:

γ3 =
κ3

κ
3/2
2

, γ4 =
κ4

κ2
2

(15)
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umulants κr and 
orresponding moments mr are de�ned by:
κ2 = m2 − m2

1 (16)
κ3 = m3 − 3m2m1 + 2m3

1 (17)
κ4 = m4 − 4m3m1 − 3m2

2 + 12m2m
2
1 − 6m4

1 (18)
mr =

∫

+∞

−∞

xrf(x) dx . (19)Other sets of 
hara
teristi
s 
an be obtained by using Renyi's quadrati
 en-tropy [18℄:
H2 = − log

[
∫ +∞

−∞

f2(x) dx

] (20)and by solving a polynomial regression on the logarithm of a PDF:
log(f(x)) ≈

∑

k

akxk. (21)3.3 Features Sele
tion & Dimensionality Redu
tionIt is obvious that limiting the number of features will make learning and testingfaster and demanding less memory. Aside from this, feature spa
e of a lowerdimension may enable more a

urate 
lassi�ers for a �nite learning set.Based on the 
hara
teristi
s presented in the previous se
tion, experimentshave been 
ondu
ted to 
hoose the most dis
riminative set of features:� features based on Ai: γA
3 , γA

4 , HA
2 , aA

3 , aA
2 , aA

1 , aA
0 (3-rd degree polynomialis su�
ient to des
ribe asymmetry and �atness of 
onsidered distributions);� features based on ωi: γω

4 , Hω
2 , aω

4 , aω
2 , aω

0 (PDF of ωi is symmetri
al aboutthe mean, so all the features based on asymmetry were eliminated).On
e they have been sele
ted, one 
an apply the Linear Dis
riminant Analysisto verify the importan
e of 
hosen features. Using the Fisher's 
riterion [19℄:
JF = tr{T} = tr{S−1

w Sb} (22)where Sw is the within-
lass 
ovarian
e matrix (the sum of 
ovarian
e matri-
es 
omputed for ea
h 
lass separately), and Sb is the between-
lass 
ovarian
ematrix (the 
ovarian
e matrix of 
lass means), we found:� all sele
ted features are of equal importan
e � among di�erents 
ombinationsof features, the whole set is the most dis
riminative;� features from Ai are best to separate between 
lasses of signals with symmet-ri
 Ai PDF (MPSK, MFSK) and asymmetri
 (NOISE, MQAM and MIX-TURE);� features from ωi are best to separate between 
lasses of signals with unimodal
ωi PDF (MPSK, MQAM and MIXTURE) and multimodal (MFSK).
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ation 1163It should be noted, that using eigenve
tors of matrix T, it is possible toredu
e dimensionality of the feature ve
tor
x = [γA

3 , γA
4 , HA

2 , aA
3 , aA

2 , aA
1 , aA

0 , γω
4 , Hω

2 , aω
4 , aω

2 , aω
0 ]T (23)by means of linear transformation:

y = Wx (24)where eigenve
tors 
orresponding to largest eigenvalues of T form the rows ofthe transformation matrix W.4 SimulationsTo evaluate the performan
e of the proposed set of features, extensive simu-lations were 
ondu
ted on the signals: NOISE, MPSK (2, 4 and 8), MFSK (2and 4), MQAM (16 and 32) and MIXTURE (2xBPSK, 2xQPSK and BPSK &QPSK). All signals were 
omposed of 512 samples, 5 samples per symbol, 1000di�erent realizations. Signal to Noise Ratio (SNR) was varying from 0 dB upto 30 dB. The residual frequen
ies ωri
, the 
orresponding phases Θri

, as wellas the symbol timings Ti, were 
hosen randomly a

ording to Nyquist samplingtheorem. Corresponding results (SNR = 5 dB) are shown in Fig. 1.
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Fig. 1. Signals in a 2D spa
e after dimensionality redu
tion (SNR = 5 dB).
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lusionIt is evident that sele
ted set of features is very e�
ient even for low SNR.Perfe
t 
lassi�
ation 
an be obtained for the 
lasses NOISE, MPSK and MFSKfor SNR > 5 dB, however distin
tion between MQAM and MIXTURE is farfrom being �su�
ient enough�.Although 
lassi�
ation in a 2D spa
e was used for visualization purposes, oneshould not limit himself during 
onstru
ting a �nal 
lassi�er. Adding another setof 
hara
teristi
s (based for example on Time-Frequen
y Distributions (TFD)),may be more attra
tive in more than 2 dimensions. Also, making 
lassi�er hier-ar
hi
al or using some nonlinear mappings (MMI [20℄, NPCA [21℄), may in
reaseseparability of the 
lasses. These topi
s will be 
overed in a future work.Referen
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