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Abstract—A new adaptive algorithm, called LLMS, which 
employs two Least Mean Square (LMS) sections in tandem, 
is proposed for different applications of array beamforming. 
12The convergence of the LLMS algorithm is analyzed, in 
terms of mean square error, in the presence of Additive 
White Gaussian Noise (AWGN) for two different operation 
modes; normal referencing and self-referencing. Computer 
simulation results show that the convergence performance 
of LLMS is superior to the conventional LMS algorithms as 
well some of the more recent LMS based algorithms, such 
as constrained-stability LMS (CSLMS), and Modified 
Robust Variable Step Size LMS (MRVSS) algorithms. It is 
shown that the convergence of LLMS is quite insensitive to 
variations in both the input signal-to-noise ratio and the step 
size used. Also, the operation of the proposed algorithm 
remains stable even when its reference signal is corrupted 
by AWGN noise. Furthermore, the fidelity of the signal at 
the output of the LLMS beamformer is demonstrated 
through the Error Vector Magnitude (EVM) and the scatter 
plot obtained. 
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1. INTRODUCTION 

In recent years, adaptive or smart antennas have become a 
key component for various wireless applications, such as 
radar, sonar and cellular mobile communications [1]. Its use 
could lead to an increase in the detection range of radar and 
sonar systems, and the capacity of mobile radio 
communication systems. These antennas are used as spatial 
filters for receiving the desired signals coming from specific 
direction or directions while minimizing the reception of 
unwanted signals emanating from other directions. 
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Beamforming is central to all antenna arrays, and a 
summary of  beamforming techniques is presented in [2]. 
An overview of signal processing techniques used for 
adaptive antenna array beamforming is described in [3].  

Because of its simplicity and robustness, the LMS 
algorithm has become one of the most popular adaptive 
signal processing techniques adopted in many applications 
including antenna array beamforming. Moreover, there is 
always a tradeoff between the speed of convergence of the 
LMS algorithm and its residual error floor when a given 
adaptation step size is used.  Over the last three decades, 
several improvements have been proposed to speed up the 
convergence of the LMS algorithm. These include NLMS 
(normalized-LMS) [4, 5], transform domain algorithms [6], 
and recently the constrained-stability LMS (CSLMS) 
algorithm [7] and the Modified Robust Variable Step Size 
LMS (MRVSS) algorithm [8]. The CSLMS algorithm has 
been proposed  for use in speech signals [7]. Because of its 
improved performance over other published LMS 
algorithms, it is included in this paper for performance 
comparison with the proposed LLMS scheme. In [9], a 
variable-length LMS algorithm that can accelerate the initial 
convergence of either the conventional LMS or the NLMS 
algorithm at the expense of an increase in computational 
complexity is described . 

Yet another approach of attempting to speed up the 
convergence of LMS, without having to sacrifice too much 
of its error floor performance is through the use of a 
Variable Step Size LMS (VSSLMS) algorithm. All the 
published VSSLMS algorithms [9-13] make use of an initial 
large adaptation step size to speed up the convergence. 
Upon approaching the steady state, smaller step sizes are 
then introduced to decrease the level of adjustment, hence 
maintaining a lower error floor. More recently, the MRVSS 
algorithm, a modified version of the VSSLMS algorithm, 
has been proposed to improve both the anti-noise and 
tracking ability of the Robust VSSLMS algorithm (RVSS) 
presented in [12]. This algorithm is also used as a reference 
for performance comparison with LLMS proposed in this 
paper. 

All the above previously published algorithms require an 
accurate reference signal for their proper operation. In some 
cases, several operating parameters are also required to be 
specified. For example, in the case of MRVSS, the 
algorithm makes use of twelve predefined parameters. As a 
result, the performance of such algorithm becomes highly 
dependent on the input signal [14]. Furthermore, the 
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computational complexity of MRVSS involves 9N complex 
multiplications and 4N complex additions [15], while the 
CSLMS requires   (3N+1) complex multiplications, one 
complex division and (4N+3) complex additions, where N is 
the number of antenna array elements.  

In an attempt to achieve fast convergence in conjunction 
with less complexity, better performance, and a lower 
requirement for an accurate reference, a new algorithm, 
called LLMS, which employs two LMS sections in tandem, 
is proposed for adaptive array beamforming. A block 
diagram of the proposed scheme is shown in Fig. 1. It 
involves 4N+1 complex multiplications and 2N complex 
additions. 

With the proposed LLMS scheme, as shown in Fig. 1, the 
intermediate output, 1LMSy , yielded from the first LMS 
section, LMS1, is multiplied by the image array factor ( )′A
of the desired signal. The resultant “filtered” signal is 
further processed by the second LMS section, LMS2. For the 
adaptation process, the error signal of LMS2, 2e , is fed back 
to combine with that of LMS1, to form the overall error 
signal, LLMSe , for updating the tap weights of LMS1. As 
shown in Fig. 1, a common external reference signal is used 
for both the two LMS sections, i.e., 1d  and 2d . Moreover, 
this external reference signal may be replaced by 1LMSy  in 
place of 2d , and LLMSy  for 1d  to produce a self-referenced 
version of the LLMS scheme, as described in Section II B. 

The rest of the paper is organized as follows. In section 
II, the convergence of LLMS is analyzed in the presence of 
an external reference signal. This is then followed by an 
analysis involving the use of the estimated outputs, 1LMSy

and LLMSy in place of the external reference. The latter is 

referred to as self-referencing, from hereon. Results 
obtained from computer simulations for an eight element 
array are presented in Section III. Finally, Section IV 
concludes the paper. 

2. CONVERGENCE OF THE PROPOSED LLMS  

ALGORITHM  

The convergence of the proposed LLMS algorithm has 
been analyzed with the following assumptions: 

(i) The propagation environment is stationary. 
(ii) The components of the signal vector ( )1 jX should 

be independent identically distributed (iid). 
(iii) All signals are zero mean and stationary at least to 

the second order. 

Analysis with an external reference  
First, we consider the case when an external reference 

signal is used. From Fig. 1, the error signal for updating 
LLMS1 at the jth iteration is given by 

1 2( ) ( ) ( 1)LLMSe j e j e j= − −                   (1) 

with   1 1 1( ) ( ) ( ) ( )H
1e j d j j j= −W X  

and    2 2 2 2( ) ( ) ( ) ( )He j d j j j= −W X  

where ( )i ⋅X  and ( )i ⋅W represent the input signal and 

weight vectors, respectively of the ith LMS section. ሺ·ሻு 
denotes the Hermitian matrix of ሺ·ሻ.   

 
The input signal of LMS2 is derived from the LMS1, such 
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Figure 1 – The proposed LLMS algorithm with an external reference signal  
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2 1 1( ) ( ) ( ) ( )H
LMS 1j y j j j′ ′= =X A A W X  

   where ′A is the image of the array factor of the desired 
signal.  

The weight vector ( )i ⋅W  for the ith LMS section is 

updated according to [16], 

0( 1) ( ) ( ) ( ) , 0i i i i i ij j e j jμ μ μ+ = + < <W W X       (2) 

where 1 21 for LMS and 2 for LMS ;i = iμ is the step size, 

and 0μ is a positive number that depends on the input signal 

statistics.  

Now, the convergence performance of the LLMS 
algorithm can be analyzed in terms of the expected value of 

2
LLMSe , such that   

 

    
2 2

1 2( ) ( ) ( ) ( 1)LLMSj E e j E e j e jξ    = − −    
�  

 
2

1 1 2( ) ( ) ( ) ( 1)H
1E d j j j e j = − − −  

W X  

 

2

1 1

1 1

( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( ) ( ) ( )

H

H H
1 1

E D j j j j

E D j j j D j j j∗

 = + 
 − + 

W Q W

X W W X
     (3) 

where • signifies modulus; 1 2( ) ( ) ( 1)D j d j e j= − − , and 

Q is the correlation matrix of the input signals given by [17] 

as 

( ) ( ) ( )H
1 1j E j j =  Q X X                        (4) 

Consider the first term on the RHS of (3). It can be 
expressed as   

2 2

1 2( ) ( ) ( 1)E D j E d j e j   = − −     

2 2

1 2

1 2 1 2

( ) ( 1)

  ( ) ( 1) ( ) ( 1)

E d j E e j

E d j e j d j e j∗ ∗

   = + −   
 − − + − 

   (5) 

where * stands for conjugate operator. 

With 1( )d j  and 2 ( 1)e j −  being zero mean and 

uncorrelated based on the assumptions (ii), (ii) and (iii), the 
last RHS term of (5) is therefore equal to zero. This gives 

2 2 2

1 2( ) ( ) ( 1)E D j E d j E e j     = + −               (6) 

From (1), the last RHS term of (6) becomes 

   
2 2 2

2 2

2 2

( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

LLMS

LLMS LLMS

E e j E d j E y j

E d j y j d j y j∗ ∗

     − = − + −     
 − − − + − − 

     (7) 

Assume 2 1( ) ( )d j d j= , and H
LLMS LLMS 1y = W X  where 

2 1
H H H

LLMS ′W = W A W , (7) can be rewritten as 

    

2 2

2 2( 1) ( 1)

                        ( 1) ( 1)

                        ( 1) ( 1)

                  ( 1) ( 1) ( 1)

H
LLMS

H
LLMS

H
LLMS LLMS

E e j E d j

j j

j j

j j j

   − = −   
− − −

− − −

+ − − −

W Z
Z W
W Q W

   (8) 

where ( )jZ  corresponds to the input signal cross-
correlation vector given by [17] as 

2( ) ( ) ( )1j E j d j∗ =  Z X                          (9) 

Substituting (8) in (6), the first term on the RHS of (3) 
becomes 

2 2 2

1 2( ) ( ) ( 1)

    ( 1) ( 1) ( 1) ( 1)

     ( 1) ( 1) ( 1)

H H
LLMS LLMS

H
LLMS LLMS

E D j E d j E d j

j j j j

j j j

     = + −     
− − − − − −

+ − − −

W Z Z W
W Q W

   (10) 

The last RHS term of (3) may be written as 

        

1 1

1 1

2 1

2 1

( ) ( ) ( ) ( ) ( ) ( )

  + ( ) ( ) ( ) ( )

( 1) ( ) ( )
      

( 1) ( ) ( )

H H
1 1

H H

H
1

H
1

E D j j j D j j j

j j j j

e j j j
E

e j j j

∗

∗

 + 
= +

 −
−  

+ −  

X W W X

Z W W Z

X W
W X

          (11) 

Applying the assumptions (ii),  (iii) and (iv), we obtain 

        
1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( )

H H
1 1

H H

E D j j j D j j j

j j j j

∗ + 
= +

X W W X

Z W W Z
       (12) 

As a result, the mean square error ξ  as specified by (3) 
can be rewritten to include the results of (10) and (12) to 
become 

2 2

1 2

1

1 1 1

( ) ( ) ( 1)

 ( 1) ( 1) ( 1) ( ) ( )

 ( 1) ( 1) ( 1) ( 1)

  ( ) ( ) ( ) ( ) ( )

H H
LLMS LLMS

H H
LLMS LLMS

H H

j E d j E d j

j j j j j

j j j j

j j j j j

ξ    = + −   
+ − − − −

− − − − − −

− +

W Q W Z W
W Z Z W
W Z W Q W

 (13) 

Differentiating (13) with respect to the weight vector 

1 ( )H jW then yields the gradient vector ( )ξ∇ so that 

1( ) ( ) ( ) ( )optj j jξ = − +∇ Z Q W                 (14)             

By equating ( )ξ∇  to zero, we obtain the optimal weight 
vector as 

1
1( ) ( ) ( )opt j j j−=W Q Z                          (15) 

This represents the Wiener-Hopf equation in matrix form. 
Therefore, the minimum MSE can be obtained from (15) 
and (13) to give  

= ∆ 
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2 2

min 1 2

1

2

( ) ( 1)

( ) ( ) ( 1) ( 1)

( 1) ( 1) 1 ( 1)

H H
opt LLMS

H H
LLMS

E d j E d j

j j j j

j j j

ξ    = + −   
− − − −

′+ − − − + −

Z W Z W

W Z A W

   (16) 

Based on (15) and (16), (13) becomes 

( ) ( )min 1 1 1 1

H

opt optξ ξ= + − −W W Q W W            (17) 

The error values of (17) are plotted as the theoretical 
curve in Fig. 2b.  

Now, define 

( )1 1 1opt−�V W W                             (18) 

so that (17) can be written as 

min
H

1 1ξ ξ= +V QV                             (19) 

Differentiating (19) with respect to H
1V will yield another 

form for the gradient [18], such that 

 ( ) 1ξ =∇ QV                                (20) 

Using eigenvalue decomposition (EVD) of Q  in (20) 
yields 

1
1

H
1 1 1 1

−
1= =Q q q q qΛ Λ                        (21) 

where 1Λ is the diagonal matrix of eigenvalues of Q for an 
N element array, i.e., 

1 1 2[ , , , ]Ndiag E E E= Λ                (22) 

For steepest descent, the weight vector is updated 
according to 

1 1 1( 1) ( ) ( ( )))j j jμ ξ+ = + −W W ∇(                  (23) 

where 1μ is the convergence constant that controls the 

stability and the rate of adaptation of the weight vector, and 

( )j∇  is the gradient at the jth iteration. 

We may rewrite (23) in the form of a linear homogeneous 
vector difference equation using (18), (20) and (21) to give 

1 1 1 1 1( 1) ( ) ( )j j jμ+ = −V V QV                 (24) 

Alternatively, (24) can be written as 

( )
( )
( )

1 1 1

1 1

1 1

( ) ( 1)

( 1)

(0)

H H
1 1 1 1

H
1 1

j H
1 1

j j

j

μ

μ

μ

1

1

1

= − −

= − −

= −

V q q q q V

q I q V

q I q V

Λ

Λ

Λ

                (25) 

By substituting (25) in (19), the MSE at the jth iteration is 
given by 

( )
2

min 1 1 1( ) (0) (0)
jH H

1 1jξ ξ μ 1= + −V q I q VΛ   (26) 

From (26), the asymptotic value of ξ  becomes  

( )1 1lim 0
j

j
μ

→∞
− =I Λ                       (27) 

With the term ( )1 1μ−I Λ converging, as discussed in 
section III, we finally obtain 

minlim ( )
j

jξ ξ
→∞

=                               (28)    

Analysis of the self-referencing scheme 
Next, consider the case when the external reference is 

being replaced by internally generated signals, such that 

1( ) ( 1)LLMSd j y j= − ,   and 2 1( ) ( )LMSd j y j=            (29)    

As a result of these changes, and note that the error signal 

2 2 LLMSe d y= − , we can redefine ( )D j in (3) as 

1

( ) ( )

2 ( 1) ( 1)LLMS LMS

d j D j

y j y j= − − −
�

               (30) 

Based on the definition of (30), we reanalyze the MSE as 
defined in (3) to yield 

2

1

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

H

H H

j E d j j j

j j j j j

ξ   ′= − 
′− +

Z W

W Z W Q W
           (31) 

where ( )j′Z  corresponds to the input signal cross-
correlation vector given by 

( ) ( ) ( )1j E j d j∗′  =  Z X                       (32) 

The error values obtained from (31) are plotted as the 
theoretical curve in Fig. 4.  

By following the same analyzing steps of (5) to (31), it 
can be shown that the proposed LLMS algorithm will 
converge under the condition of self-referencing. 

3. SIMULATIONS  

The performance of the proposed LLMS algorithm has 
been studied by means of MATLAB simulation. For 
comparison purposes, results obtained with the conventional 
LMS, CSLMS and MRVSS algorithms are also presented. 
For the simulations, the following parameters are used: 

• A linear array consisting of 8 isotropic elements. 

• A BPSK signal arriving at an angle of 0 , or if specified 

at 10 . 
• An AWGN channel. 
• All weight vectors are initially set to zero. 

• Unless otherwise specified, 1 2 0.05μ μ= = . 

• An interference BPSK signal arrives at 45iθ =  with the 

same amplitude as the desired signal.  

To facilitate the comparison with the published 
algorithms; CSLMS in [7] and MRVSS in [8], a brief 
description of the weight adaptation of these algorithms is 
given here. 

= ∆ 

=∆
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The weight adaptation of the CSLMS algorithm is as 
follow: 

[ ]( )2
( 1) ( ) ( ) ( )

( )

jj j j e j
j

μ δ δ
δ ε

∗
+ = +

+
W W X

W
  (33)       

where ε  is a small constant and is adjusted to yield the 

best possible performance in the operating environment 

under consideration in this paper, and 

( ) ( ) ( 1)j j jδ = − −W W W ,  

( ) ( ) ( 1)j j jδ = − −X X X  , 

[ ] [ ] [ ]( ) ( ) ( 1)j j je j e j e jδ = − − , 

 and  [ ] ( ) ( ) ( ) ( )k He j d j k j= −W X . 

As for the MRVSS algorithm, the step size, μ , is 

updated as 

max max

min min

2

; if ( 1)

( 1) ; if ( 1)

( ) ( )

j

j j

j P j

μ μ μ
μ μ μ μ

αμ γ

 + >
+ = + <
 +

 

with ( 1) (1 ( )) ( ) ( ) ( ) ( 1)P j j P j j e j e jβ β+ = − + −  

and 
max max

min min

2

; if ( 1)

( 1) ; if ( 1)

( ) ( )

j

j j

j P j

β β β
β β β β

ηβ υ

 + >
+ = + <
 +

 

where 0, 1, ( , ) 0,α η γ υ> > > and ( )P j  is the time 

averaged over two consecutive values of the error 
correlation. β  is the time average of  the error square signal 

with its upper and lower bounds as maxβ  and minβ  , 

respectively. maxμ  and minμ are the upper and lower bounds 

of μ  respectively. 

Table 1 tabulates the values of the various constants 
adopted for the simulations using the four different adaptive 
algorithms. Some of these values are given in [8, 11, 12]. 

Often, performance comparison between different 
adaptive beamforming schemes is made in terms of the 
convergence errors and resultant beam patterns. Moreover, 
for a digitally modulated signal, it is also convenient to 
make use of the Error Vector Magnitude (EVM) as an 
accurate measure of any distortion introduced by the 
adaptive scheme on the received signal at a given signal-to-
noise ratio (SNR). It is shown in [19] that EVM is more 
sensitive to variations in SNR  variations than Bit Error Rate 
(BER). EVM is defined as [20] 

2

1

1
( ) ( )

K

r t
j

RMS
o

S j S j
K

EVM
P

=

−
=


                 (34) 

where K  is the number of symbols used, ( )rS j is the 
normalized thj output of the beamformer, and ( )tS j is the

thj transmit symbol. oP  is the normalized transmit symbol 
power.  

Table 1. Values of the Constants Uesd in Simulation 

Algorithm Value(s) of the different constants 

LMS  0.05μ =  

LLMS  1 2 0.05μ μ= =  

CSLMS  0.05ε =  

MRVSS 
max min max min

0.97 , 4.8 4, 0.97 , 5 4

0.2, 1 4, 1, 0

e e

e

α γ η υ
μ μ β β
= = − = = −

= = − = =
 

 

Performance with an external reference 
First, the performances of the LLMS, CSLMS, MRVSS 

and LMS schemes have been studied in the presence of an 
external reference signal. The convergence performances of 
these schemes are compared based on the ensemble average 
squared error ( )2e obtained from 100 individual simulation 
runs. The results obtained for different values of input SNR
, and step size, 1μ  and 2μ , are presented. 

Figs. 2a – 2c show the convergence behaviors of the four 
adaptive schemes for SNR values of 5, 10, and 15 dB, 
respectively. For the proposed LLMS scheme, the 
theoretical convergence error calculated using (16) and (17) 
for SNR=10 dB is also shown in Fig. 2b. It is observed that 
under the given conditions, the proposed LLMS algorithm 
converges much faster than the other three schemes. 
Furthermore, the error floor of LLMS is less sensitive to the 
input SNR. As shown in Fig. 2b, there is close agreement 
between the simulated and theoretical error plots for the 
proposed of LLMS scheme. As for the CSLMS and MRVSS 
algorithms, they share the same performance for all the 
three SNR values considered. 

Next, it can be shown that for ensuring convergence of 
the LLMS algorithm, the values of the step size used have to 
be within the following bounds:  

 
max

20 1 Eμ< <                                                (35)  

and    2
1

20 2 N
μ σ< <                                           (36)   

where maxE is the largest eigenvalue given in (22), and 2
1σ

is the variance of 1LMSy . 
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(a) 5dBSNR=  (b) 10dBSNR=  

 

(c) 15dBSNR=  

  Figure 2 – The convergence of LLMS, CSLMS, 
MRVSS and LMS with the parameters given in Table I, 

for three different values of input SNR .  

For an 8-element array operating with an input SNR of 10 
dB, we have 0 0.81μ< <  and 0 0.7262μ< < . When the 
step sizes are chosen to be well within their limits, such as 
μ2=0.05 or o.1 in conjunction with μ1=0.1 or 0.005 
respectively, Fig. 3 shows that LLMS converges within a 
few iterations to a low error floor. However, LLMS shows 
sign of instability when operating with step sizes close to 
their upper limits, as shown in the convergence behavior for 
the two cases with  μ1=0.005 and μ2=0.6, and μ1=0.799 and 
μ2=0.05.  

 

Figure 3 – The convergence of the LLMS algorithm at 
10SNR dB=  for different combinations of step sizes. 

 

Performance with self-referencing 

As shown in Fig. 2 and Fig. 3, the LLMS algorithm can 
converge within ten iterations. Once this occurs, the 
intermediate output, 1LMSy , tends to resemble the desired 

signal ( )ds t , and may then be used in place of the external 

reference 2LMSd  for the current iteration of the LMS2 

section. As the LMS2 section converges, its output LLMSy

becomes the estimated ( )ds t . As a result, LLMSy may be used 

to replace 1LMSd as the reference for the LMS1 section. This 

feedforward and feedback arrangement enables the 
provision of self-referencing in LLMS, and allows the 
external reference signal to be discontinued after an initial 
four iterations. The ability of the LLMS algorithm to 
maintain operation with the internally generated reference 
signals is demonstrated in Fig. 4. On the other hand, it 
clearly shows that the traditional LMS, CSLMS, MRVSS 
algorithms are unable to converge without the use of an 
external reference signal. For comparison, the theoretical 
convergence errors calculated from (31) are also plotted in 
Fig. 4. 

 
Figure 4 – The convergence of LLMS with self-

referencing using the parameters given in Table I, for 
10SNR dB= . An external reference is used for the initial 

four iterations. 

Performance with a noisy reference signal 

The performances of LLMS, CSLMS, MRVSS and LMS 
have also been investigated when their reference signals 
used are corrupted by AWGN. This is done by examining 
the resultant mean square error ξ  when the noise level in 

the reference signal is varied. Fig. 5 shows the ensemble 

average of the mean square error, ξ , obtained from 100 

individual simulation runs, as a function of the ratio of the 
rms noise level σ  to the amplitude of the reference signal. 

 It is interesting to note that the conventional LMS, 
CSLMS and MRVSS algorithms are quite sensitive to the 
presence of noise in the reference signal. On the other hand, 
the LLMS algorithm becomes very tolerant to noisy 

reference signal. As shown in Fig. 5, the values of ξ  

associated with LLMS remain very small even when the rms 
noise level becomes as large as the reference signal. 
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Figure 5 – The influence of noise in the reference signal 
on the mean square  error ξ   with 0.051 2μ μ μ= = =  

Tracking performance of  LLMS 

The ability of LLMS in tracking sudden interruptions in 
the input signal is investigated by examining the behavior of 
its error signal 2

LLMSe . For this study, the input signal is 
assumed to be periodically interrupted for 25 out of 100 
iterations. The resulting tracking performance of LLMS is 
shown in Fig. 6, which shows that, the mean square error ξ  
increases very rapidly each time the input is switched on or 
off. This indicates the fast response of LLMS to sudden 
interruptions in the input signal. Unlike the responses for 
LMS, CSLMS and MRVSS, which are also included in Fig. 
6 for comparison purpose, the mean square error ξ  
associated with LLMS remains low despite the interruption 
occurring in the input signal.  

 
Figure 6 – Tracking performance comparison of LLMS, 
CSLMS, MRVSS and LMS with 0.051 2μ μ μ= = =  and 

10SNR dB=  

 

Beam pattern characteristics 

Fig. 7 shows the beam patterns obtained with the LLMS, 
CSLMS, MRVSS and LMS algorithms at an input SNR of 
10 dB and a signal-to-interference ratio SIR of 0 dB. In this 

case, the direction of arrival of the desired signal, i.e., 
10o

dθ = while the interference arrives at 45iθ =  . It is 
assumed that an ideal reference is initially used for a given 
number of iterations. After that, LLMS switched to the self-
referencing mode, while the other three algorithms reverted 
to using a random signal as the reference. In this way, it 
provides a fairer comparison between the different schemes, 
i.e., operating without an ideal reference signal. The results 
are shown for the number of iterations used in Figs. 7a, 7b 
and 7c show the results obtained when the external 
reference is used for the initial 5, 7, and 10 iterations, 
respectively. In Fig. 7d, all the algorithms make use of the 
external reference over the entire 100 iterations. As a 
consequence, all the algorithms have almost the same 
performance. 

From Figs. 7a, 7b, and 7c, the following observations are 
made: i) LMS, CSLMS and MRVSS algorithms lose the 
direction of arrival of the desired signal when the external 
reference is removed after an initial period of operating with 
it, while LLMS algorithm maintains the maximum gain in 
this direction; ii) the difference between the gains at the 
desired and the interference directions for the LLMS 
algorithm is increased from 14 dB to 20 dB when the period 
of use of the external reference is extended from 5 to 10 
iterations; and iii) this difference becomes almost the same 
when the external reference is initially applied for either 7 
or 10 iterations. The latest observation confirms that the 
LLMS algorithm reached its steady state in 7 iterations.  

 

EVM and Scatter Plot 

     In this experiment, the rms EVM is computed, based on 
(34), for values of input SNR ranging from 0 – 30 dB in 
steps of 5 dB. The resulting EVM values, as shown in Fig. 
8, have been calculated after each of the four different 
adaptive algorithms has converged. The superior 
performance of the proposed LLMS scheme is clearly 
demonstrated with its lower resultant EVM values compared 
with the other three schemes. This is particularly true at 
lower input SNR values. This further confirms the 
observation made from Fig. 2 showing that the operation of 
LLMS is quite insensitive to input SNR. 

Next, the scatter plots of the BPSK signals recovered using 
the LMS, CSLMS, MRVSS, and LLMS adaptive 
Beamformer are shown in Figs. 9a – 9d, respectively. 

Each scatter plot is obtained for an input SNR of 10 dB 
using 100 signal samples after the algorithm has converged. 
Again, the scatter plot obtained with LLMS shows the least 
spreading, indicating its ability to retain the signal fidelity. 
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(a) 5 iterations (b) 7 iterations 

(c) 10 iterations (d) 100 iterations 

Figure 7 – The beams patterns achieved with the LLMS, 
CSLMS, MRVSS and LMS algorithms when the 

external reference is used for the intial 5, 7, 10, and 100 
iterations for an input 10SNR dB=  and 0SIR = dB. The 

parameters given in Table 1 are adopted. 

 

 

Figure 8 – The EVM values obtained with the LLMS, 
CSLMS, MRVSS and LMS algorithms for different 

input SNR. 

4. CONCLUSIONS 

A new algorithm, called LLMS, which combines the use 
of two successive LMS sections, is presented for adaptive 
array beamforming. The convergence of LLMS has been 
analyzed assuming the use of an external reference signal. 
This is then extended to cover the case that makes use of 
self-referencing. The convergence behaviors of the LLMS 
algorithm with different step size combinations of 1μ  and 

2μ  have been demonstrated by means of Matlab simulations 
under different input SNR conditions.  

 

(a) LMS algorithm 

 

(b) CSLMS algorithm 

 

(c) MRVSS algorithm 
 

(d) LLMS algorithm 

Figure 9 – The scatter plots of BPSK signal obtained 
using 100 signal samples of LLMS, CSLMS, MRVSS 
and LMS algorithms under input 10SNR dB=  and 

0SIR =  dB.  

It is shown that the proposed LLMS algorithm can 
achieve rapid convergence, typically within a few iterations. 
Furthermore, the steady state MSE of LLMS is quite 
insensitive to input SNR. Also, unlike the conventional 
LMS, CSLMS and MRVSS algorithms, the proposed LLMS 
scheme is able to operate with noisy reference signal. Once 
the initial convergence is achieved, within a few iterations, 
the LLMS scheme can maintain its operation through self-
referencing. Moreover, the resultant EVM and scatter plot 
of the proposed LLMS further demonstrate its superior 
performance over the other three LMS-based schemes.  

The rapid convergence and robust operation of the 
proposed LLMS algorithm have been achieved with a 
complexity slightly larger than twice the LMS scheme. 
Moreover, its complexity is lower than the CSLMS and 
MRVSS algorithms, as well as our previously published 
RLMS scheme [21, 22].  
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