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Abstract: Building an accurate digital terrain model (DTM) of the seabed is a key issue 

for various military and civilian hydrographers applications.  

In the past decades, the emergence of autonomous underwater vehicles (AUV) offers new 

methodologies to collect the bathymetric data used in the estimation of the DTM.  In our 

study, we use the DAURADE AUV platform which is capable of acquiring bathymetry 

with two acoustic sensors: A multibeam echo sounder (MBES) and an interferometric 

sidescan sonar (ISSS). The two sensors (MBES and ISSS) are synchronized to operate 

concurrently. In fact, the final DTM can be improved by performing a fusion of the data; 

the two systems acquire the bathymetry with different resolutions, geometries and error 

models; these   parameters are introduced in the fusion process to improve the estimation 

of the DTM and to increase its accuracy. 

The aim of this paper is to describe the fusion method and discuss our simulated results. 

First, the modeling of two acoustic sensors (MBES and ISSS) will be briefly described. 

The input data sets are simulated by applying the sensor models on simplified seabed 

models. The use of seabed models provides ground truth and, therefore, allows for 

quantifying the accuracy of the fusion process.  
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1. Introduction   

The most key issue of the international hydrographic community is the question of the 

irreducible uncertainty in modern surveys to build an accurate digital terrain model 

(DTM). As the base data for DTM estimation is a huge amount of noisy soundings, some 

automatic data-cleaning and DTM production package is recently developed such the 

Combined Uncertainty and Bathymetry Estimation (CUBE) [1] or the Cleaning through 

Hierarchic Adaptive and Robust Modelling (CHARM) [2]. These two algorithms are 

developed to process full coverage multibeam data when every sounding must include 

estimates of its uncertainty (CUBE case). Despite this is possible by using the quality 

factor proposed by [3], these algorithms can’t integrates heterogeneous and qualitative 

data like expert opinion or bathymetry derived from  shape from shading method. When 

many bathymetric data with different spatial resolution, coverage and uncertainty are 

available for the same area, the question arises whether this redundancy and 

complementary can be used to fuse them and generate a new DTM that is more wide and 

accurate.    

In the past decades, the emergence of autonomous underwater vehicles AUVs which 

can be equipped with a wide variety of acoustic sensors or sonar systems, offers different 

methodologies to collect bathymetric data. In shallow water and for full coverage area 

survey, the two most used systems are multibeam echo sounder (MBES) and 

interferometric sidescan sonar (ISSS). The MBES still the standard sonar used for accurate 

hydrographic survey. But when installed on AUVs, which navigate usually close to the 

seafloor, it will suffer from its limited angular coverage and thus a lot of time consuming 

for full coverage which is difficult for vehicles with limited battery autonomy. In such 

survey conditions, there are advantages to use ISSS systems. An ISSS has a swath width 

of more than 10-times the altitude of the sonar and produce high resolution bathymetry 

across track. This would reduce significantly the time of the survey for full coverage. On 

the other hand, such system suffers from many disadvantages. The geometry of ISSS 

transducers doesn’t allow gathering data in nadir area. It has a limited bathymetric 

accuracy about 2-3% of water depth. Another issue has been baseline decorrelation and 

the shifting footprint effect as described by Lurton [4]. In spite of these significant 

disadvantages, recent advantages in system electronics and algorithms have improved 

ISSS performance. In many AUV survey missions such as detecting and mapping 

submerged wrecks, rocks, and obstructions, the fuse of bathymetry derived from MBES 

and ISSS would improve productivity. 

In this paper, we focus on MBES-ISSS bathymetric data fusion under uncertainty 

measurement. The remainder of this paper is organised as follows. Section 2 describes the 

bathymetric fusion model. Section 3 introduces the modeling of two acoustic sensors 

(MBES and ISSS) and the performance of the fusion model.  

2. MBES-ISSS bathymetric data fusion model     

Digital surfaces, derived from different sensors, contain intrinsic error due to 

acquisition and processing methodology in relations with terrain type and shape. In order 

to overcome limitations of each DTM, an intelligent fusion which consider uncertainty 

and reliability of each sensor is required. In radar community, the most used fusion 

algorithm to combine DTM’s (SAR interferometry, LIDAR...) is a weighted average of 

inputs in each grid cell. As weights factor are not usually available, data accuracies are 

estimated from DTM (roughness, slope,...). To be robust to blunders, other methods are 

used by representing local patches as a sparse combination of basis patches [8].    



 

These algorithms can’t integrate prior knowledge about the precision and reliability of 

sensors which can vary with time and environment conditions. To deal with such kind of 

measurement, many theories have proved suitable for modeling uncertainty. We can 

mention imprecise probability, possibility theory and theory of belief function.  

The theory of belief function, also known as Dempster-Shafer Theory (DST), was 

developed by Shafer [6] and initiated by the work of Dempster on imprecise probabilities. 

It's one of the popular approaches to handling uncertainty in literature for data fusion and 

it's often considered as a generalized model of probability and possibility theory. We will 

not introduce the basic of this theory. The interested reader can find sufficient 

interpretations of evidence theory in the literature.  

In our case, inputs are soundings zi with known position (xi, yi) and standard deviation 

σi   processed from MBS and ISSS and we look for more accurate zi values by combining 

them. In [7] Petit-Renaud and Denoeux propose an evidential regression (EVREG) 

analysis of imprecise and uncertain data. In this model, evidential theory are extended to 

fuzzy sets where focal elements are fuzzy variables. The basic idea is to construct fuzzy 

belief assignment (FBA) in two steps: discounting FBA’s mi according to a measure of 

dissimilarity between inputs vectors, and combination of the discounted FBA’s [7].   The 

model in our case may be summarized as follows. 

Given a set of n sounding values                  a FBA mi can be defined for each pair 
         as: 

                                                                                                                                                                                                                                                                     
          

           
                                                                                     

                                                                                              

Where Fi  is a Gaussian fuzzy number with center zi   and standard deviation σi  and 

reliability pi of the sonar. Each element ei of the inputs                       

         is a piece of evidence concerning the possible value of zi , which can be 

represented by a FBA           as a discounting of   : 
 

            
                                       

                                                 
                                       

                            (2) 

 

Where      is a decreasing function from    to       verifying             and 

            .      represent a discounting function that measure the dissimilarity of 

the variable of interest z using a suitable metric     between input vectors y and   . If       

is close to   ,           and    are very similar and vice versa. When the metric     is 

defined as Euclidian distance, a natural choice for      is [7]:  

 

                                                                               

 

Where         is a real parameter (usually taken            ).  
 The information provided by each element of the input set can be combined by 

the conjunctive rule of Dempster. In practice we can neglect the effect of inputs    far 

from the position of interest   and only take   nearest neighbours. The final FBA is then: 

 

              
                                                                               



 

 

The presented EVREG model is applied for each sensor, and their outputs are combined 

using Dempster’s rule to form a new FBA      
     

  . The probabilistic density 

          associated to           exits, and has the following expression: 

                
         

    

   
      

       

                                    

Where   
       is the normalized version of           and     is the cardinality of A. 

For point prediction of the z value we can use the center of gravity of A    
  . Then    can 

be expressed as:  

         
            

 
      

                                                                

 

To measure the uncertainty involved in the prediction of FBA, we can used the measure of 

nonspecifity generalized for belief functions in [9]. This is defined as: 

                          

              

                                     

3. Experiments  

3.1 Simulated data  

 

To validate our fusion process, we have developed a simulator for MBES and ISSS 

sonar. The simulator is based on construction of an adequate scattering-point model using 

a facet approach. In this approach, the synthetic bottom DTM is modeled as a set of 

triangular facets whose center represents the location of a scattering point and each facet 

has a unique identity composed of its normal vector, surface and its amplitude depending 

in sediment type. The signal received for each facet takes the form: 

 

                                     
     

  
    

Where                    is the emitted signal,    two way time propagation,       

the directivity of emission antenna,    triangular facet surface,        is the 

backscattering strength depending on incident angle and sediment type,   is absorption 

coefficient and    is sonar facet distance.  

A signal of 300 pings of a synthetic seafloor with three sediment types (flat mud, sand 

waves and rock) are collected with a MBES and ISSS with the following characteristics: 

 

MBES ISSS 

 100 kHz system 

 Beam aperture along-track 1° 

 Beam aperture across-track 1° 

 64 transducer element 

 100 kHz system 

 Beam aperture along-track 1° 

 Maximum range 75 m 

 3 receiving transducer with 25° depression angle 

 

For the MBES the process consist of beamforming, depth detection by centre of gravity of 

the amplitude envelope and zero-phase difference instant estimation. For ISSS, the phase 

difference direction estimation is done by the so-called Vernier method using the three 

pairs of receivers. Next an outlier filter is applied to the estimated arrival angles. To 

estimate receive angle uncertainty, a 2
nd

 degree polynomial is fit to each horizontal range 

bins of 30cm size and only one soundings is retained per bins. Sounding uncertainty of 



 

each sounding is estimated by using the quality factor proposed by Lurton et al. [3, 5]. It is 

the ratio between the estimated sounding and its standard deviation obtained from signal 

characteristics 
 

3.2 results 

 

The estimated soundings data for both systems is collected, using the simulator 

described above, throw three survey lines. Line in position y=0 is surveyed with both 

systems and the two other only with MBES (see ‘FIG.1’).   

Figure ‘Fig.2’ displays the results obtained for three scenarios data fusion: ISSS 

alone, ISSS and MBES survey line at y=0, ISSS line at y=0 and three MBES lines at y=0, 

60 and -60. The pignistic probability distribution, also the width of first and ninth deciles 

interval, can be seen to reflect the uncertainty taking into account both the scatter and the 

density of input soundings. The uncertainty is maximal in the extremity of the profile in all 

scenarios because there is no input data. It’s also maximal for the two first cases in the -67 

range because of shadows in ISSS data. This effect can be also detected on the 

nonspecificity measurement.  The nonspecificity measurement shows the contribution of 

the fusion of the MBES and ISSS data by the decreasing of uncertainty in overlapping 

ranges.    
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Fig.1: Simulated sea bottom and survey lines (broken lines). 

Fig.2: One ping fusion result for three scenarios. Left figures shows the 

estimated depth at the same resolution of the ISSS (red broken lines) with the 

actual depth (black broken lines) and first and ninth deciles of the pignistic 

distribution (grey area). Right correspondent nonspecificity measurment    


