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Abstract

Because it can be found in many applications, the Blind

Separation of Sources (BSS) problem has raised an in-

creasing interest. According to the BSS, one should esti-

mate some unknown signals (named sources) using mul-

tisensor output signals (i.e. observed or mixing signals).

For the Blind Separation of Sources (BSS) problem, many

algorithms have been proposed in the last decade. Most

of these algorithms are based on High Order Statistics

(HOS) criteria.

In this paper, we focus on the blind separation of non-

stationary signals (music, speech signal, etc) from their

linear mixtures. At �rst, we present briey the idea be-

hind the separation of non-stationary sources using Sec-

ond Order Statistics (SOS). After that, we introduce and

compare three possible separating algorithms.

Keywords: Decorrelation, Second order Statistics,

Whiteness, Blind Separation of Sources, Natural Gradi-

ent, Kullback-Leibler Divergence, Hadamard Inequality,

Jacobi Diagonalization, and Joint Diagonalization.

1 Introduction

This problem was initially proposed by H�erault et

al. to study some biological phenomena [1]. Actu-

ally, the BSS model can be found in di�erent situa-

tions [?]: radio-communication (in mobile-phone as

SDMA (Spatial Division Multiple Access) and free-

hand phone), speech enhancement [2], separation of

seismic signals [3], sources separation method applied

to nuclear reactor monitoring [4], airport surveillance

[5], noise removal from biomedical signals [6], etc.

In our laboratory (BMC), we are involving in the

application of signal processing and BSS [7, 8] in

robotics and arti�cial life as in the following scenario:

In our environment, there are many kinds of sound

sources, human voices, phone bell, fan noise, radio

and so on. We, human, can discriminate each of

sounds overlapping each other and recognize what

sound exits at which direction. Thus we can under-

stand our environment by sense of audition. This is

called auditory scene analysis. Our goal is the real-

ization of a new generation of smart robots. These

robots, using sound discrimination along with sound

separation among other capabilities, should imitated

the behavior of human been.

In this paper, we briey show that the second

order statistics is enough to separate the instanta-

neous mixture of independent non-stationary signals.

In addition, We also discuss and compare the be-

havior of three di�erent algorithms for BSS of non-

stationary signals.

� The �rst one the algorithm of Matsuoka et

al. [9, 10] is based on on the minimization of

Hadamard's inequality. This algorithm use in-

directly the time correlation information of the

sources to achieve the separation [10].

� The second algorithm use directly that informa-

tion in the sense that it minimize the correla-

tion matrix of the estimated sources. In another

word that algorithm use the decorrelation (or

whiteness) process of the estimated signals at

di�erent times.

� Finally, an algorithmbased on a modi�ed Jacobi

diagonalization approach is discussed.

2 Transmission Model

Let us denote by X = (xi) the p�1 unknown source

vector, Y = (yi) the p observation signals and by

S = (si) the p estimated sources (see Fig. 1). Let

M = (mij) denotes the channel e�ect or the un-

known full-rank mixing matrix and W = (wij) is

the weight matrix. The relationships between the

0-7803-6355-8/00/$10.00 c @ 2000 IEEE

26



G

M WY SX

Figure 1: Channel Model

di�erent vectors are given in the following:

Y = MX; (1)

S = WY =WMX = GX; (2)

here G stands for the Global matrix. It is widely

known that in the context of blind separation of

instantaneous mixtures, one can only separate the

source up to a scale factor and a permutation order

[11]. In other words, the separation is considered

achieved when the global matrix G becomes:

G = P� (3)

where P is any full-rank permutation matrix and �

is any full-rank diagonal matrix.

3 Separation Approach

At �rst, Matsuoka et al. [9, 10] have showed that

blind separation for non-stationary signals can be

achieved by making the mixed signals uncorrelate

with each other, if the variances of the source signals

uctuate independently of each other.

Independently from the previous approach and for

two signals, it has been shown that the decorrela-

tion of the output signals makes the weight matrix

coe�cients belong to a set of hyperbolas. And these

hyperbolas have two intersection points which cor-

respond to the blind separation solutions of non-

stationary signals [12].

In general and for two or more sources, it was

proved [12, 13] that the decorrelation of the output

signals at any time means the separation of the non-

stationary statistically independent sources. In other

words, for the case of independent non-stationary

(up to second-order statistics) sources such speech

signals where the power of the signals can be con-

sidered as time variant, we proved, using geometri-

cal information, that the decorrelation of the output

signals at any time leads to the separation of the in-

dependent sources. In other words, for these kinds of

sources, any algorithm can separate the sources if at

the convergence of this algorithm the covariance ma-

trix of the output signals becomes a diagonal matrix

at any time.

4 Algorithms & Experimental

Results

In this section we discuss the ideas of three di�erent

algorithms and some experimental results are pre-

sented.

4.1 Minimization of Hadamard's in-

equality

Given that Hadamard's inequality [14] of an arbi-

trary positive semide�nite matrix R = (rij) is de-

�ned by
pY

i=1

rii � detfRg; (4)

where the equality holds if and only if the matrix R

is a diagonal matrix.

Matsuoka et al. [9, 10, 15] suggest the separa-

tion of non-stationary signals by minimizing, with

respect to the weight matrix W, a modi�ed ver-

sion of Hadamard's inequality (4) of the estimated

source's covariance matrix R = EfS(n) S(n)T g.

Their practical method uses a nonnegative function

Q(W; t) which takes the minimum (zero) only when

the mixed signals are uncorrelated with each other,

and achieves blind separation by modifying the pa-

rameters of the network such that the cost function

takes the minimum:

min
W

pX

i=1

logEfs2i (n)g � log detfEfS(n) ST (n)gg:

(5)

The last function is a nonnegative function that takes

the minimum(zero) only when the output signals are

uncorrelated with each other. The separating matrix

W is obtained by minimizing the function (5) with

steepest decent method as:

�w?
ij = �

yi(t)yj(t)

�i

: (6)

hereW? = (w?
ij) =W

�1, �w?
ij = w?

ij(t)�w
?
ij(t�1),

�i(t) denotes the moving average of E[y2i (t)] given

by �i(t) = ��i(t) + (1� �)y2i (t), and � and � were

set to 10�4 and 0:9 respectively. The separated sig-

nals are found after 15000 iterations using that algo-

rithms. The performances of this algorithm is shown

in Fig. 2.
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Figure 2: Hadamard's inequality: First column contains the signals of the �rst channel (i.e., �rst source,

�rst mixture signal and the �rst estimated source), the second column contains the signals of the second

channel.

4.2 Minimization of a Kullback diver-

gence

The kull-back divergence between two random zero

mean Gaussian vectors V1 and V2, with respectively

two covariance matrix I and R, is given by:

�(R; I) =
1

2
(TracefRg � log det(R)) � 0; (7)

where I it can be considered as the p � p identity

matrix, and R = EfS(n) S(n)T g is the p�p covari-

ance matrix of the estimated sources S(n). Thus the

minimization of divergence (7) makes the matrix R

close to an identity matrix (i.e., a diagonal matrix)

and induces the separation of the sources, as we ex-

plained in the previous section.

The minimization of divergence (7) [13] is achieved

according to the natural gradient [16, 17]. The ad-

vantage of this approach is that the algorithm and

the updating rules are simple. However the conver-

gence point of this criterion (7) is aW� that makes

the matrix R close to an identity matrix (i.e., a spe-

cial diagonal matrix). It is obvious that this con-

dition is more restrictive than the initial condition

described in the previous section where R must sim-

ply be a diagonal matrix. In another hand and in

many cases, the convergence has been observed over

3000 to 20000 iterations, depending on the sources

(music, speech, with or without silent e�ect, high

power, etc) and the mixing matrix.
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Figure 3: Evaluation of the Kullback Divergence

with respect to the iteration number.

We conducted many experiments and found that the

crosstalk was between -15 dB and -23 dB. The eval-

uation of the cost function with respect to the iter-

ation number is shown in Fig. 3. Fig. 4 shows the

experimental results of the separation of two speech

sources.

4.3 Jacobi Diagonalization Method

It has been shown that the joint diagonalization [18]

(i.e. a generalization of the Cyclic Jacobi diago-

nalization method [19]) of the fourth order cumu-

lants matrices can separate blindly the independent

sources [20]. In addition, Belouchrani et al. [21], us-

ing the joint diagonalization (i.e. JADE algorithm),

have derived a second order statistics criterion to sep-

arate correlated stationary signals.

According to the previous study [12], one can sep-

arate non-stationary sources (speech or music) from

an instantaneous mixture by looking for a weight ma-

trixW that can diagonalize the covariance matrix of

the output signals. Unfortunately, the Cyclic Jacobi

method can not directly be used to achieve our goal

because the sources are assumed to be a second or-

der non-stationary signals, therefore the covariance

matrix of such signals are time variant. Using the

joint diagonalization algorithm proposed by cardoso

and soulamic [18], one can jointly diagonalize a set

of q covariance matrix Ri = EfS(n)S(n)T g, here

1 � i � q. The joint diagonalization algorithm is

a modi�ed version of the cyclic Jacobi method that

minimize the following function with respect to a ma-

trix V:

JO�(R1; � � � ;Rq) =
X

i

O�(VT
RiV) (8)

here the function O� of a matrix R = (rij) is de-

�ned by: O�(R) =
P

i 6=j r
2

ij. It is obvious that

JOff (R1; � � � ;Rq) = 0 when VT
RiV is a diagonal

matrix for every i. Because the estimation error and

the noise, one can not minimize JOff (R1; � � � ;Rq)

to the lower limit (i.e. 0). In our experimental study,

the number q of the covariance matrices Ri has been

chosen between 10 and 25. The covariance matrices

Ri have been estimated according to the adaptive

estimator of [22] over some slipping windows of 500

to 800 samples and shifted 100 to 200 samples for

each Ri. All the previous limits have been deter-

mined by an experimental study using our data base

signals. In addition, we should mention that we used

a threshold to reduce the silence e�ect: When ever

the observation signals at time n0 is less than the

prede�ned threshold �, it will not be considered as

input signals.
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Figure 5: Evaluation of the Jacobi Diagonalization

with respect to the iteration number.

We conducted many experiments and found that

the crosstalk was between -17 dB and -25 dB. Fig. 5

shows the evaluation of the cost function with re-

spect to the iteration number. The experimental

study shows that the convergence of this algorithm

are obtained in few iterations. Fig. 6 shows the ex-

perimental results of the separation of two speech

sources.

5 Conclusion

In this paper, the separation of non-stationary

sources (up to second order statistics, as music or

speech signals) is investigated. The idea of three dif-

ferent approaches is discussed and the experimental

results of three algorithms have been shown.

In some experiments the second criterion of the

subsection 4.2 shows better results than the other al-

gorithms but its performances and convergences de-

pends more on the type of the signals and the mix-

ing matrix than the other algorithms. The �rst al-

gorithm 4.1 shows, in general, better performances

than the others. We should also mention that modi-

�ed versions of that algorithm were proposed to sep-

arate signals in real world applications and for con-

29



10000 20000 30000 40000
n

-3

-2

-1

1

2

X1 1th source

10000 20000 30000 40000
n

-2

-1

1

2

3

X2 2th source

10000 20000 30000 40000
n

-3

-2

-1

1

2

Y1 1th mixture

10000 20000 30000 40000
n

-2

-1

1

2

3

Y2 2th mixture

10000 20000 30000 40000
n

-3

-2

-1

1

2

S1 1th estimated source

10000 20000 30000 40000
n

-2

-1

1

2

3

S2 2th estimated source

Figure 4: Kullback Divergence: First column contains the signals of the �rst channel (i.e., �rst source, �rst

mixture signal and the �rst estimated source), the second column contains the signals of the second channel.

volutive mixtures (i.e. channel with memory e�ect)

[23, 24, 25]. But in another hand, its performances

depends on the algorithm parameters. Finally, the

convergence of the third one (subsection 4.3) depends

less on the type of the sources. But depending on the

sources and the channel, his performances results at

the convergence can not be satisfactory enough.

To conclude our paper, one should mention that

the separation of non-stationary signals in real world

is far to be considered as completely achieved. In an-

other hand, the performances of the algorithms can

change depending on the channel (anechoic cham-

ber, normal, room, echo chamber), the types of

the sources (sampling rates, speech, music or mixed

signals) and on the algorithms parameters. These

reasons make the classi�cation and the comparison

among the di�erent criteria and algorithms, are very

di�cult.
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