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Abstract: To characterize and process a signal, many high order
statistics are used by the signal processing researchers. Specific
features of the data (temporal, stationary) and real time
applications require the development of new estimators. In this
paper, we study some estimators of high order moment and
cumulant using adapted to different kind of signals.
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1. INTRODUCTION

Some specific features of data and problem in Signa(lbx

processing field require the study of differentiraator

classes. Indeed, data could be temporary, statiomanot.

Beside that in various applications, the processhmauld be
in real time. In example, for acoustic signals ésoor speech
[1,2]), data are considered as non-stationary dog Iperiod
and can be considered stationary within few mitiesels.

However, background noise added by the used seraften

considered as stationary. In speech/noise detection
recognition applications, the processing shoulddbee in

real or at least pseudo real time. Therefore, quackl

efficient estimations of the signal statistics aigoother

parameters are deeply needed in various techngues as
classification, detection, recognition, and soursegaration,
etc.

In many signal processing applications, researcagnsell
engineers assume that signal distributions are sEausor
Laplacian in order to simplify the calculus [2].dked, this
assumption means that a signal distribution canljasgiven
by only its mean and its standard deviation. Howettas
strong assumption can not be satisfied is varicesemnt
applications. Since the last two decades, othdisttal
information have been introduced as asymmetricflatdess
estimators (given for example by the skewness amtb$iss)
or more generally High Order Statistics [3,4,5,6,Thus
many estimators have been proposed [2,8,9,10].

After brief introduction on moments and cumulants
section 2, we study different estimators of momeats
cumulants in section 3. Section 4 presents a caatipar
study of theses estimators. Section 5 presentsanalusions

on estimators of high order statistics for signalgessing.
2. THEORETICAL BACKGROUND

Let X denotes a stochastic process in a real space,
describing a signal, its characteristic functiogiigen by:

@ (1) = [ exptx)p, (x)dx (1)

This function is continuous complex function. Weosld
mention that its module is less or equal to 1, &nak

(O) = 1. Using the previous equation, one can define the
second characteristic function as:

by (1) =In(ey (1)) - (2)

By definition, theqth order moment is given [6,7] by thgh
order derivative of the first characteristic function around
Zero:

do, (1)
dte

:E[xq].

t=0

b, = (1), 3)

By similar definition, thegth order cumulant is given as the
gth order derivative of the second characteristics function at
the origin:

q
Kq :(—1)‘*.% =cunf X, X..., §
t=0
It is clear that the first and second order cumulants are
respectively the mean and the varianceXofn the case of
Gaussian distribution, we should mention that all cumulants
with order higher than 2 are null.
Leonov and Shiryayev wrote down general relationships
among moments and cumulants. According to their study, a
i gthorder cumulant can be evaluated as:

(4)

Cum(X) = Curf X X, X=3 €17 ( p Db, b, -4, (5)
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(11)

(1< p< . P .
where  the numbers{vl,vz,...,vp 1< ps q are such as with Zv, =g at each row, for example in the second term
i=1

P
v.0{L...a- p+1 and )_v, =q. We should mention here Y

L0 Via and vy, represent the sum of two subsets of the
i=1

Vi

that in their original study, they developed thiatienships in indices set {vl,vz,...,vp}. Otherwise, This estimator is

the case of] random variables [7]. Equation (5) can be easil . i .
obtained from the original relationship. Using eipm (5), Yonsistent. A non-biased cumulant estimator caddsticed

one can write the fourth order cumulant as in [8]: from (11): .
i ) . Cumy(X) =) ¢(-D°(p-DH, f,.0, , (12
Cum,(X) =, —4p, ;= 35+ 1000 ,— G, (6) p=t
Last equation can be simplified for a zero meanaig where ¢, are constants depending on the partitions of the
indicesv;. To evaluated these constants, one should solve an
cum(X) =, 32 @) equation system with a number of equations equathéo
4 2"

number of unknowns. We can demonstrate that susgistam
has a unique solution. To fix our ideas, let ussaer the
fourth order cumulants case:

3. HIGH ORDER STATISTICSESTIMATORS _— R R ~n 2 A L4
CUI’TM(X): 414‘411311#3‘3112*'12@1”2‘ 631! (13)

3.1 Arithmetic estimators

with

Let us consideiN realizationsx; of a stochastic procesé
assumed to be an ergodic one. In this case, thiemeatic _ N®+N?-24N+24  N(2N° - 10N+ 9)
estimator of thejth order moment is given by: a= (N-1)(N-2)(N-3)’ - 2(N= )(N= 2)(N- 3)

. 13

“q:ﬁZ‘q' (8) __ N(N’-N-6) d= N (2 N- 5) (14)

- (N-1)(N-2)(N-3)"  2(N- 1)(N- 2)(N- 3)

This estimator means that the sigials stationary oveN |, _ N°
samples. This estimator is a non biased estimatdr it (N-1)(N-2)(N-3)’

variance is given by:
In the case of zero mean signals, we obtain efBily

L1 2 — N+2. N .
var(pq)—ﬁ(u2q H2), 9) Cumi( X) = N_1u4—3N_1p§. (15)

we can notice that this estimator is a consistem; hience The arithmetic estimator of theth order moments or

more the temporal signal will be stationary moree the,mylants such we write them here are not adaplinés

estimation will be better. point is an important one for real time applicatioBstimator
An arithmetic estimator of thgth order cumulant can be (8) can be modified to an adaptive form [8]:

developed form equation (5): K (k-1 (k-1)+ *
q

q ~ _l _
Cum( =3 (-1 (p-Di, A, A, . (10) (k) =1 2 > (16)

. N g .
Unfortunately, this estimator is biased, sincedrample the with k>1 and (i, (1) =x'. Estimator (16) converges very fast,

estimator(i, fi, of u, ., is obviously biased. In a generalhowever it has been shown [8] that it is a goodmesor for
L o non-stationary signals. The cumulant estimator dan

calculated form (12), this suppose to put in a ntgntoe g
Hq valuesfi, (k—1) with i O{,...,q}.

+(N-Du, M,
HN=17H, 1y 1,
+..+(N- 1)p‘1pV1 My, The exponential estimators are defined as following

case, we have:

e[cum(%]=3 E2( pay;

N » 3.2 Exponential estimators
p=1
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= @AY AN an

where 0< A, <1 stands for a forgotten factor which its value

depends on the order of the estimated statistiis d$timator
can be calculated easily in an adaptive

(A (K) =A A (k-D)+(@-A )%), but it is biased

(E[ﬁq]:(l—xg)pq), and it is asymptotically non biased

one. The main interest of such estimator residehenfact
that it can give better estimation for the momeritsnon-

stationary signals. Thus mowe, is close to 1, more the past

samples are taking into account. A non biased exiad
estimator can be:
(1=
AN
o = a0

i=1

(18)

Then an adaptive exponential estimator is given by:

iy (K) = A@-AD,(k=D+ @-A %) . (19)

(- 7\)(

The cumulants are estimated using (12) and (19.atthors
of [9] proposed an adaptive fourth order momeninesbr
for zero mean signals:

Cumi( X)( R = Cum( X k1)+(@1-y) H( Cun{ X 1)
(20)

with y a forgotten factor and

H, (¥) = X =3x1, (k=1)= X (21)

Let us consider the comparison between this estingatd the
following one:

Cumi( (K= %-302,. (21)

The adaptive estimator (20) is asymptotically n@séd, but
it has a slow convergence [8]. We can write thifmegor in
general case by:

Hi (%) = % = 4%, (k=1)= 3%, (k- 1)

(22)
+12¢02 (k- 1)- €1 k- 1) x

3.3 Mixed estimator
It is clear that exponential estimator (19) canl dé#h non-

stationary signals, however the influence of pastges can
become much important than the influence of theemnecent

samples. In order to solve such problem for weatdgionary
signal (.e. overn < N samples, as in sonar applications [1]),
we propose the following new estimator:

N-n-1

Z Xt +(1-A )Z)\N "ixi=3+% (23)

n+1| =N-n

way

This mixed estimator is the sum of an arithmetitestor &,
over the previous samples and an exponential estimégr

on the other samples. The mixed estimator can beawm
biased, if one consider the following relation a@zd of (24):

fo=_utS

q = (2‘}\2‘_“_1) (24)

An adaptive version can be given by:

&,(K=AB(k-1)+(1-r,) %

2 )\k n-2
i, (k) —%(ﬁq(k—lﬁi X+ N, —D)E (k- 1)) (25)
+(1—>\q)XE_ XE—n—l

n2-A"2)

3. COMPARATIVE STUDY

In order to compare the different estimators (169), and
(25) of the fourth order moment, some experimereallts
are presented hereinafter. Unfortunately, we cduldn
evaluated the new proposed mixed estimator onweakly
stationary data such as sonar data since the treabnealues
are unknown. However, the comparison among fourtiero
cumulants estimators was done using estimated nisnign
arithmetic estimator ((15) (made for zero man dghd13)
(made for general case)), by exponential estim@0y and
the simplified one (21), and finally by estimat@2). The
performances of these estimators are evaluatetirere kind
of simulated signals: a zero mean stationary si¢ffigure 1),
a non-centered stationary signal (Figure 2) andoa- n
stationary centered signal (Figure 3).
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Figure 1. Fourth order moment and cumulant estimsatd a
centered and stationary signal (type white noite),
forgotten factor is 0.999 for all moments age 0.997".

! The previous the figures represent the estimatibthe
moments with respect to the samples number asiiolip
e In black the theoretical value
* Inred, arithmetic estimator (16)
e In blue, exponential estimator (19)
« In green, mixed estimator (25) witi¥50
Concerning the estimation of the cumulants, difiereolors
have been used to represent different estimators:
* In black, theoretical values
e In pink, estimator (15).
e In grey, estimator (13) for a centered or non aewte
signal.
e In blue, estimator (21) for a centered signal.
* In green, estimator (20) for a centered signal.
e Finally, in yellow, estimator (22) for a centered rmon
centered signal.
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Figure 2. Fourth order moment and cumulant estimsatd a
non-centered and stationary signal (type white @pithe
forgotten factor was 0.99 for all moments apd 0.997".

Figures 1 and 2 show the fact that the arithmettorator
converges faster than the exponential
estimators on stationary signals (with or withoataz mean
samples). One can also notice that the variant¢beofmixed
estimator is more sensitive to the value of thgdtten factor
than the exponential estimator. For a well chos#nevof the
forgotten factor, the performances of exponentral enixed
estimator are very similar. Figure 3 shows thatatithmetic
estimator can not estimate the moments of the tatiesary
signal, unlike the exponential and mixed estimators

The comparison among the different estimators efdlirth
order cumulant shows that the arithmetic estimatmverges
more quickly with a small variance on stationamgnsils. On
the other hand, exponential estimators are chaiaeteby a
slow convergence and a high variance which meaatsstith
estimators should be avoided in the case of statyosignals.
Moreover we remark that the generalization (22) tlod
estimator (20) for a stationary and centered sipaala good
and fast convergence speed (Figure 1). Estimatbr d®es
also good results on stationary and centered signal
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Figure 3. Fourth order moment and cumulant estirsaaf a
centered and non-stationary signal (type white epithe

forgotten factor was 0.99 for all moments ape 0.99".

Figure 3 shows the fact that the arithmetic estmat the
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cumulants is not a good estimator for non-statiprségnals.
The performances of the three other estimators vary
similar, however figure 1 shows that estimator (@2)verges
more quickly than the other.

5. CONCLUSION

In this paper, we have compared three estimators of
moments and five estimators of cumulants. The estira
based on the arithmetic form are well adapted fatianary
signals. However, stationarity properties can rotshtisfied
in many applications. Thus the estimators basedthmn
exponential form must be preferred for non-statigrseggnals;
on the other hand they converge less quickly, tfeye high
variances and they are sensitive to the chosere waflithe
forgotten factor. More the order is high, more thei
convergences become a problem.

Thus the choice of the estimator of high orderisttas
must be done according to the kind of signal and th
application. Finally, we can conclude that a uniggémator
with good convergence and small variance for afidkof
signals actually does not exist.
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