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ABSTRACT

For the blind separation of sources (BSS) problem (or the
independent component analysis (ICA)), it has been shown
in many situations, that the adaptive subspace algorithms
are very slow and need an important computation e�orts.
In a previous publication, we proposed a modi�ed subspace
algorithm for stationary signals. But that algorithm was
limited to stationary signals and its convergence was not
fast enough.
Here, we propose a batch subspace algorithm. The experi-
mental study proves that this algorithm is very fast but its
performance are not enough to completely achieve the sep-
aration of the independent component of the signals. In the
other hand, this algorithm can be used as a pre-processing
algorithm to initialized other adaptive subspace algorithms.
Keywords: blind separation of sources, ICA, subspace meth-
ods, Lagrange method, Cholesky decomposition.

1. INTRODUCTION

The blind separation of sources (BSS) problem [1] (or the
Independent Component Analysis "ICA" problem [2]) is a
recent and important problem in signal processing. Accord-
ing to this problem, one should estimate, using the output
signals of an unknown channel (i.e. the observed signals
or the mixing signals), the unknown input signals of that
channel (i.e. sources). The sources are assumed to be sta-
tistically independent from each other.

At �rst the BSS was proposed in a biological context [3].
Actually, one can �nd this problem in many di�erent situa-
tions: speech enhancement [4], separation of seismic signals
[5], sources separation method applied to nuclear reactor
monitoring [6], airport surveillance [7], noise removal from
biomedical signals [8], etc.

Since 1985, many researchers have been interested in
BSS [9, 10, 11, 12]. Most of the algorithms deal with a linear
channel model: The instantaneous mixtures (i.e. memory-
less channel) or the convolutive mixtures (i.e. the chan-
nel e�ect can be considered as a linear �lter). The crite-
ria of those algorithms were generally based on high order
statistics [13, 14, 15]. Recently, by using only second or-
der statistics, some subspace methods have been explored
to separate blindly the sources in the case of convolutive

mixtures [16, 17].

In previous works, we proposed two subspace approaches
using LMS [18, 17] or a conjugate gradient algorithm [19]
to minimize subspace criteria. Those criteria were been de-
rived from the generalization of the method proposed by
Gesbert et al. [20] for blind identi�cation1 . To improve the
convergence speed of our algorithms, we proposed a modi-
�ed subspace algorithm for stationary signals [21]. But that
algorithm was limited to stationary signals and its conver-
gence was not fast enough. Here, we propose a new sub-
space algorithm, which improves the performance of our
previous methods.

2. MODEL, ASSUMPTIONS & CRITERION

Let Y (n) denotes the q � 1 mixing vector obtained from p
unknown and statistically independent sources S(n) and let
the q � p polynomial matrix H(z) = (hij(z)) denotes the
channel e�ect (see �g. 1). In this paper, we assume that the
�lters hij(z) are causal and �nite impulse response (FIR)
�lters. Let us denote by M the highest degree2 of the �lters
hij(z). In this case, Y (n) can be written as:

Y (n) =

MX
i=0

H(i)S(n� i); (1)

where S(n� i) is the p� 1 source vector at the time (n� i)
and H(i) is the real q� p matrix corresponding to the �lter
matrix H(z) at time i.

Let YN (n) (resp. SM+N (n)) denotes the q(N + 1) � 1
(resp. (M +N + 1)p� 1) vector given by:

YN (n) =

0
@ Y (n)

...
Y (n�N)

1
A ;

SM+N (n) =

0
@ S(n)

...
S(n �M �N)

1
A :

1In the identi�cation problem, the authors generally assume
that they have one source and that the source is an iid signal.

2M is called the degree of the �lter matrix H(z).
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Figure 1: General Structure.

By using N > q observations of the mixture vector, we
can formulate the model (1) in another form:

YN (n) = TN (H)SM+N(n); (2)

whereTN(H) is the Sylvester matrix corresponding toH(z).
The q(N + 1)� p(M +N + 1) matrix TN (H) is given by
[22] as:2
664
H(0) H(1) : : : H(M) 0 : : : 0
0 H(0) : : : H(M � 1) H(M) 0 : : :
...

...
. . .

.. .
. ..

. . .
...

0 : : : 0 H(0) H(1) : : : H(M)

3
775 :

It was proved in [23] that the rank of Sylvester matrix
TN (H) = p(N + 1) +

Pp

i=1
Mi; where Mi is the degree of

the ith column3 of H(z). Now, it is easy to prove that the
Sylvester matrix has a full rank and it is left invertible if
each column of the polynomial matrix H(z) has the same
degree and N > Mp (see [24] for more details). From equa-
tion (2), one can conclude that the separation of the sources
can be achieved by estimating a (M +N + 1)p� q(N + 1)
left inverse matrix G of the Sylvester matrix. To estimate
G, one can use criterion proposed in [17] obtained from the
generalization of the criterion in [20]:

minC(G) = E k(I 0)GYN (n)�(0 I)GYN(n+1)k2; (3)

here E stands for the expectation, I is the identity matrix
and 0 is a zero matrix of appropriate dimensions. It has
been shown in [17] that the above minimization lead us to
a matrix G? such:

Perf =G
?
TN(H) = diag(M; � � � ;M); (4)

where M is any p � p matrix. Using the last equation, it
becomes clear that the separation is reduced to the sepa-
ration of an instantaneous mixture with a mixing matrix
M. In other words, this algorithm can be decomposed into
two steps: First step, by using only second-order statistics,
we reduce the convolutive mixture problem to an instan-
taneous mixture (deconvolution step); then in the second
step, we must only separate sources consisting of a simple
instantaneous mixture (typically, most of the instantaneous
mixture algorithms are based on fourth-order statistics).

3The degree of a column is de�ned as the highest degree of
the �lters in this column.

Finally, to avoid the spurious solutions (i.e. a singular
matrix M), one must minimize that criterion subject to a
constraint [17]:

Subject to G0RN (n)G
T
0 = I; (5)

here RN (n) = E YN (n)Y
T
N (n), and the p�q(N+1) matrix

G0 stands for the �rst bloc line ofG = (GT
0 � � � GT

(M+N))
T .

The minimization using a LMS algorithm of the above cri-
terion with respect to a constraint was discuss in our previ-
ous work [17]. In addition, the minimization of a modi�ed
version of the above criterion was done using a conjugate
gradient algorithm [19].

3. ALGORITHM

From the previous section, it is clear that the minimiza-
tion of the criterion (3) should be done subject to a p2

constraints4 . Let const denotes the constraint vector (i.e.
const = Vec (G0RN(n)G

T
0 � I), here Vec is the operator

that corresponds to a p� q matrix a pq vector). The min-
imization of the criterion (3) subject to the constraints (5)
can be formulated using the Lagrange method as:

L(G; �) = C(G)� � const (6)

here � is a line vector, stands for the Lagrange parameters.
The minimization of the above equation with respect to �
leads us to the constraint equation (5). Using the derivative
@C(G)=@G given in [17], the equation (5) and (6), one can
write:

@L(G; �)

@G
=

 
Ip 0 0

0 2I(M+N�1)p 0

0 0 Ip

!
GRN (n)

�

�
0 I(M+N)p

0 0

�
GR

T
N (n+ 1)

�

�
0 0

I(M+N)p 0

�
GRN (n+ 1)�

�
2� G0RN (n)

0

�
;

where RN (n + 1) = E YN (n)Y
T
N (n+ 1) and Il is the l � l

identity matrix. By canceling the above equation and after
some algebraic operations, one can �nd that the bloc lines

4Using the symmetrical form of the equation (5), one can
decrease the constraint number to p(p+ 1)=2.
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of the optimal G? should satisfy:

G0RN (n)G
T
0 = I; (7)

2GiRN (n) = G(i+1)R
T
N (n + 1) +

G(i�1)RN (n+ 1); (8)

G(M+N)RN = G(M+N�1)RN (n + 1); (9)

here 1 � i � M +N � 1. Let A = RT
N (n + 1)R�1N (n) and

B = RT
N (n + 1)R�1N (n), we should mention that A and B

exist if and only if (i�) RN (n) is full rank
5. Finally, using

some algebraic operations, we can prove that the previous
matrix equation system can be solved by a recursion for-
mula:

G(M+N�i�1) =G(M+N�i�2)Di (10)

her 0 � i �M+N�1 and theG0 can be obtained from the
�rst equation (7), using a simple Cholesky decomposition.
In addition, the matrices Di can also be obtained by:

D(i+1) = B(2I�DiA)�1 (11)

here 0 � i � M + N � 1 and D0 = B. Even if relation-
ships (10) and (11) looks complicated, but the time needed
to obtain the matrix G still very comparable6 to the time
needed for the convergence of LMS version [17] or even the
Conjugate Gradient version [21, 19].

4. EXPERIMENTAL RESULTS

The experiments discussed here are conducted using two
sources (p = 2) with uniform probability density function
(pdf) and four sensors (q = 4), and the degree of H(z) is
chosen as (M = 4).

To show the performances of the subspace criterion, the
matrix Perf = G?TN(H) is plotted. In the other hand,
we know that the deconvolution is achieved i� the matrix
Perf is a bloc diagonal matrix as shown in equation (4).
Figure 2 shows the performances of the batch subspace al-
gorithm discussed in this paper. It is clear from that �gure 2
that the �rst step of the algorithm (the deconvolution) was
not satisfactory achieved (Perf is not a bloc diagonal as in
equation (4). This problem was obtained because the crite-
rion (3) is a 
at function around its minima (see �gure (2)).

Figure 3 shows us the performance results and the crite-
rion convergence of the LMS algorithm (�rst column), and
the performance results and the criterion convergence of

5It is easy to prove that RN (n) is full rank i� one add some
additive independent noise to the observed signals, because one
of the subspace assumption q > p. In the other hand and by us-
ing the criterion (3), one can prove the existence of some spurious
minima, if the model have some additive noise (the demonstra-
tion will be omitted here because the limit of the sheet number).
However, the experimental study shows that one still obtain good
results for a 20 dB ratio of signal to noise (RSN). In our simula-
tion, we added a Gaussian noise with RSN � 20dB.

6Indeed, using C code program and an ultra 30 creator sun
station, it needs few minutes (less than 5) to obtained the matrix
G. But the convergence of the conjugate gradient needs from
40 to 100 minutes and the LMS algorithm needs few hours to
converge.

the same LMS algorithm but the matrix G is initialized us-
ing the result of the batch algorithm (second column). We
should mention that the time needed to obtain the minima
by the initialized version was almost half the time needed by
the non initialized version. Figures 3 (c) and (d) show the
criterion convergence (the stop condition was the limit of
the sample number, i.e. 10000). The experimental studies
show that the Conjugate Gradient version of the subspace
algorithm can converge faster and lead us to better per-
formances if that algorithm has been initialized using the
batch proposed algorithm (these results will be omitted in
this short paper).

The second step of the algorithm consists on the sep-
aration of a residual instantaneous mixture (correspond-
ing to M, see equation (4)). This separation can be pro-
cessed using any source separation algorithm applicable to
instantaneous mixtures. Here, we chose the minimization
of a cross-cumulant criterion using Levenberg-Marquardt
method [25]. Figure (4) shows us the di�erent signals (see
�gure (1)). It is clear that the sources X and the estimated
signals S are independent signals and the vector Z, output
of the subspace criterion, corresponds to an instantaneous
mixture, and the observed vector Y corresponds to a con-
volutive mixture (see [26, 27]).

Finally, the estimation of the second and the high order
statistics was done according to the method described in
[28].

5. CONCLUSION

In this paper, we propose a batch algorithm for source sep-
aration in convolutive mixtures based on a subspace ap-
proach. This new algorithm requires, as same as the other
subspace methods, that the number of sensors is larger than
the number of sources. In addition, it allows the separation
of convolutive mixtures of independent sources using mainly
second-order statistics: A simple instantaneous mixture,
the separation of which generally needs high-order statis-
tics, should be conducted to achieve the separation.

The experimental study shows that the the present algo-
rithm can be used for initialized an adaptive subspace algo-
rithm. The initialized algorithms need less time to converge.
These results were discussed in the case of two subspace
algorithms which are based on LMS or on a conjugate gra-
dient method. Finally, the subspace LMS criterion and the
Conjugate gradient criterion will become more stable and
faster if they are initialized using the present algorithm.
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Figure 2: Performances and Properties.
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Figure 3: Performances and convergence.

-3 -2 -1 1 2 3
X1

-3

-2

-1

1

2

3
X2

Sources

-10 -5 5 10

Y1

-10

-5

5

10

Y2

Mixtures

(a) The sources X in their own plane. (b) The observed signals Y .

-4 -3 -2 -1 1 2 3 4

Z1

-4

-3

-2

-1

1

2

3

4
Z2

Subspace output

-4 -3 -2 -1 1 2 3 4

S1

-4

-3

-2

-1

1

2

3

4
S2

Estimated sources

(c) The �rst step output signals Z. (d) the output signals S.

Figure 4: Di�erent signals.

67


