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Abstract

In the last decade, many researchers have investigated

the blind separation of sources and many algorithms

have been proposed to solve this problem for the case

of an instantaneous mixture (memoryless mixture) [1].

In general, high-order statistics (i.e., fourth order)

are used. However, it has been shown that algorithms

and criteria can be simpli�ed by adding special as-

sumptions [2].

In this paper, we outline the investigation of the

separation of nonstationary signals using only second-

order statistics. For the case of independent nonsta-

tionary (at least using second-order statistics) sources

such speech signals where the power of the signals is

considered time variant, we prove, using geometrical

information, that the decorrelation of the output sig-

nals at any time leads to the separation of the inde-

pendent sources. In other words, for these kinds of

sources, any algorithm can separate the sources if at

the convergence of this algorithm the covariance ma-

trix of the output signals becomes a diagonal matrix at

any time. Finally, some algorithms are proposed and

the experimental results are discussed and shown.
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Whiteness, Blind separation of sources, Natural gra-

dient, Kull-back divergence, Hadamard inequality, Ja-
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1 Introduction

The blind separation of sources is a recent and impor-

tant problem in the signal processing �eld. It involves

retrieving unknown sources of unknown mixtures from

observation using multisensors. The authors maintain

two fundamental assumptions [2].

� H1: The sources are unknown and statistically

independent from each other.

� H2: The channel model is known: as instanta-

neous (or memoryless) [3, 4, 5, 6], convolutive [7],

or non-linear mixture [8, 9].

For the instantaneous mixture, one must assume that

the mixture matrix M is a full-rank non-singular ma-

trix [10, 11]. For the other kinds of mixtures, the au-

thors maintain similar assumptions. For the instanta-

neous mixture, many algorithms have been proposed

by di�erent researchers [12, 13, 14, 15]. All of these al-

gorithms are based on high-order statistics and in most

cases fourth-order cumulants or moments are used.

After further assumptions [16, 17], researchers pro-

posed algorithms and criteria based solely on second-

order statistics, for example, those concerning the sub-

space properties of the channel [18, 19], the correla-

tion properties of the sources (i.e., the samples of each

source are correlated) [20, 21], or the nonstationary

properties of the sources [22, 23].
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Figure 1: Mixture Model.

In this paper, we assume the following H3: the

sources are independent nonstationary at least for

second-order statistics such speech signals where the

power of the signals can be considered time variant.

Our �rst goal is to prove, using geometrical informa-

tion, that for such signals, the decorrelation of the out-

put signals at any time implies the separation of the

sources. Therefore, the separation of nonstationary

signals is possible using only second-order statistics.

Finally, simple algorithms for speech or music signals

and the performances are also discussed.

2 Channel Model

Let X(n) be a p � 1 zero-mean random vector denot-

ing the source vector at time n. Let Y (n) denote the

observed (or mixture) signals (see Fig. 1) at time n.

According to the instantaneous model,

Y (n) =M X(n); (1)

where M = (mij) is a p � p full-rank (non-singular)

matrix which represents the unknown mixture.

Let W = (wij) denote the p � p weight matrix. The

estimated sources are given by

S(n) =W Y (n) =WM X(n) = G X(n); (2)

where G =WM is the global matrix. It is obvious

that by only using the source independence assumption

and model (1), we cannot exactly retrieve the sources

(S(n) 6= X(n)). Generally, we can separate the sources

up to a permutation and scales [24]. The separation

is considered to be achieved when the global matrix

becomes

G =WM = P�; (3)

where P is any p�p permutation matrix and � is any

p� p diagonal full-rank matrix.

3 Decorrelation and Separation

In this section, it is proved that one can separate non-

stationary signals using only the second-order statistics

of the estimated signals (i.e., the decorrelation of the

covariance matrix of the output signals). To simplify

this idea and to explain the geometrical solutions of

this problem, let us �rst consider the case of two sen-

sors and two sources.

3.1 First Case: Two Sources

In this subsection, we consider that there are two sen-

sors and two sources (i.e., p = 2). In the previous sec-

tion, it was mentioned that the separation is achieved

when the global matrix becomes the product of any

permutation matrix and any non-singular diagonal ma-

trix, as in (3), thus one can use the value of wii = 1

without any loss of generality. Using (3), the global

matrix can be rewritten as

G =

�
m11 +m21w12 m12 +m22w12
m21 +m11w21 m12w21 +m22

�
: (4)

Supposing that one can achieve decorrelation of the

output signals S(n) and using assumption H1, it is

possible to prove that the coe�cients of the weight

matrix satisfy the following condition:

Efs1(n) s2(n)g = 0 =)

(m11 +m21w12)(m21 +m11w21)P1 +

(m21 +m11w21)(m12w21 +m22)P2 = 0; (5)

where Efx(n)g is the expectation of x(n) and Pi =

Efx2i (n)g is the power of the i-th source xi(n). When

the sources are stationary then the powers Pi stet con-

stant. In this case, condition (5) is the equation of a hy-

perbola. At the convergence, the point (w12; w21) can

be any point on the hyperbola. Therefore, separation

cannot be achieved by using only second-order statis-

tics.

In the general case, using assumptions H1 and H2,

one can also assume hereafter the following H4: the

ratio of two signal powers Pi is also time variant (the

two powers Pi cannot have a linear relationship). Since

condition (5) must be satis�ed for any value of Pi > 0,

the weight matrix coe�cients must satisfy the follow-

ing conditions:

(m11 +m21w12)(m21 +m11w21) = 0; (6)

(m21 +m11w21)(m12w21 +m22) = 0: (7)

The solutions of equations (6) and (7) must be consid-

ered for the following three cases

� The coe�cients of the mixture matrix are nonzero

(mij 6= 0). Using equations (6) and (7), the coef-

�cient Wij can be evaluated as

w12 = �
m11

m21

and w21 = �
m22

m12

; (8)

Or

w12 = �
m12

m22

and w21 = �
m21

m11

: (9)

In both (8) and (9), the separation of sources can

be achieved (i.e., the global matrix G satis�es

equation (3)).
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Figure 2: A set of hyperbolas, with the same mixing

matrix and di�erent stationary sources.

� One coe�cient of the mixture matrix is equal to

zero (for examplem11 = 0). Using (6) and (7), we

can write

w12 = 0 and w21 = �
m22

m12

: (10)

In this case separation is also achieved.

� If more than one coe�cient of the mixture matrix

are equal to zero then M will become a permu-

tation matrix, under the assumption that M is a

full-rank nonsingular matrix. In this case, there is

no mixture problem.

Figure 2 shows hyperbolas corresponding to

the solutions of equation (5) for mixing matrix

M =

�
4 �1

2 1

�
and di�erent stationary sources. All

of the hyperbolas have two intersection points corre-

sponding to (8) and (9).

3.2 General Case

Let � denote the covariance matrix of the sources. Us-

ing assumptionH1, we can deduce that � is a diagonal

matrix, � = diag(P1; : : : ; Pp). After the decorrelation

of the output signals S(n), their covariance matrix be-

comes a diagonal one:

EfS(n) S(n)T g = G�GT = D; (11)

where D = (dij) is any diagonal matrix. From last

equation (11), we can deduce that G is an orthogonal

matrix and we can prove that

g2ilPl = dii; (12)X
l

gilgjlPl = 0 8l; and i 6= j: (13)

Generally the orthogonality of G is not great enough

to separate the sources. In the case of nonstationary

signals, the covariance matrix � changes with time.

This means that equation (13) must hold for any value

of Pi (her Pi are assumed to be independently changing

with time). Thus we can deduce that

gilgjl = 0 8l; and i 6= j: (14)

Equation (14) implies the following:

� P1: All columns of G have at most one

nonzero coe�cient.

� P2: All the rows of G have at least one

nonzero coe�cient.: In fact, let Gi (respec-

tively Wi) denotes the i-th row of G (respectively

of W) and let us put wii = 1, as in the previous

sub-section. Using equation (2), one can write

Gi = Wi:M: (15)

Using equation (15), and the conditions that

wii = 1 (i.e.,Wi 6= 0) andM is a full-rank matrix,

we can deduce that Gi cannot be a zero vector and

proposition P2 is valid.

� Propositions P1 and P2 imply the following:

P3: Each column of G has only one nonzero

coe�cient or G satis�es the condition (3).

P3 simply means that separation can be achieved

using second-order statistics.

4 Algorithms & Experimental

Results

In this section, we discuss three possible approaches to

the blind separation of nonstationary sources by using

only second-order statistics

4.1 Jacobi Diagonalization

The �rst approach is based on the Jacobi Diagonal-

ization [25] and the Joint Diagonalization [26]. Let us

denote by R = (rij) a p � p full rank matrix and let

J(m;n; �) be a Givens1 rotations matrix.

By de�nition the O� function of a matrix R is:

O�(R) =

vuut pX
i=1

pX
j=1;j 6=i

r2ij (16)

1The Givens rotations J(m;n; �) = (Jij) are similar to iden-
tity matrix except for the four elements Jmm = Jnn = cos � and
Jmn = �Jnm = sin �. The Givens rotations are also denoted by
Jacobi rotations.
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It is clear that the O�(R) is equal to zero when R

is a diagonal matrix. The Jacobi method seeks for a

set of Givens rotations matrix J(m;n; �) that minimize

the O� function of JT (m;n; �)RJ(m;n; �). Using the

same idea, the Cyclic Jacobi method [25] applied to

a symmetric matrix R gives an orthogonal matrix V

such that O�(VTRV) � tolkRkF , here tol > 0 is the

tolerance and kRkF is the Frobenius norm2.

According to the previous section, one can separate

non-stationary sources (speech or music) from an in-

stantaneous mixture by looking for a weight matrixW

that can diagonalize the covariance matrix of the out-

put signals. Unfortunately, the Cyclic Jacobi method

can not directly be used to achieve our goal because

the sources are assumed to be a second order non-

stationary signals, therefore the covariance matrix of

such signals are time variant.

On the other hand, using the joint diagonalization al-

gorithm proposed by cardoso and soulamic [26], one

can jointly diagonalize a set of q covariance matrix

Ri = EfS(n)S(n)T g, here 1 � i � q. The joint diago-

nalization algorithm is a modi�ed version of the cyclic

Jacobi method that minimize the following function

with respect to a matrix V:

JO�(R1; � � � ;Rq) =
X
i

Off(VTRiV) (17)

It is obvious that JOff (R1; � � � ;Rq) = 0 when

VTRiV is a diagonal matrix for every i. Because the

estimation error and the noise, one can not minimize

JOff (R1; � � � ;Rq) to the lower limit (i.e 0).

In our experimental study, the number q of the co-

variance matrices Ri has been chosen between 10 and

25. The covariance matrices Ri have been estimated

according to the adaptive estimator of [27] over some

sliding windows of 500 to 800 samples and shifted 100

to 200 samples for each Ri. All the previous limits

have been determined by an experimental study using

our data base signals.

In addition, we should mention that we used a

threshold to reduce the silence e�ect: When ever the

observation signals at time n0 is less than the prede-

�ned threshold �, it will not be considered as input sig-

nals: If the observation signals at time n0 is less than

the prede�ned threshold � that means two things:

1. That the sources are in common silence period, i.e

we are receiving just noise signals.

2. The samples of the sources at time n0 have some

relationship: For example, in the case of two

2The Frobenius norm of a p � p matrix R = (rij) is

kRkF =

qPp

i=1

Pp

j=1
r
2

ij
.
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Figure 3: Evaluation of the cost function with respect

to the iteration number.

sources, the �rst observation signal should be

y1(n0) = m11s1(n0) +m12s2(n0) < �. Using the

independence assumption H1, one can consider,

without loss of generality, that the probability to

have such instant n0 is so small and it has no ef-

fective e�ect on the signal statistics or on the be-

havior of the algorithm.

We conducted many experiments and found that the

crosstalk was between -17 dB and -25 dB. Fig. 3 shows

the evaluation of the cost function with respect to the

iteration number. The experimental study shows that

the convergence of this algorithm are obtained in few

iterations. Fig. 4 shows the experimental results of the

separation of two speech sources.

Finally, we should mention that the �rst one who

suggest the separation by multi-diagonalization of the

covariance matrix was Fety [20]. The approach of Fety

have been the subject of research and discussion of

many other researchers: It has been discussed and

improved by Comon et al. [28, 29, 30]. Recently,

Belouchrani et al. presented an algorithm based on

the approach of Fety and the Joint Diagonalization

[31, 32, 33] to separate stationary correlated (in time)

and independent (in space) sources signals from an in-

stantaneous mixture. In [33] Belouchrani et al. discuss

the performances of their algorithm and prove the con-

vergence of such approach.

4.2 Kull-back divergence

The second approach is based on the Kull-back dis-

tance. The Kull-back distance (or divergence) of two

probability density functions (pdf) fx and fy is given

by [34]

�(fx; fy) =

Z
fx(u) log

�
fx(u)

fy(u)

�
du: (18)
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Figure 4: First column contains the signals of the �rst channel (i.e., �rst source, �rst mixture signal and the �rst

estimated source), the second column contains the signals of the second channel.

It is known [35], that the kull-back divergence between

two random zero mean Gaussian vectors V1 and V2 is

given by

�(R; I) =
1

2
(TracefRg � log det(R)) � 0; (19)

where I is the p � p identity matrix, and

R = EfS(n) S(n)T g is the p � p covariance matrix

of the estimated sources S(n). One of the kull-back

divergence properties is that

�(R; I) = 0 i� R = I: (20)

Thus the minimization of divergence (19) makes the

matrix R close to an identity matrix (i.e., a diagonal

matrix) and induces the separation of the sources, as

we explained in the previous section.

The minimization of divergence (19) is achieved ac-

cording to the natural gradient [36, 37]. In this case the

weight matrix W can be updated at iteration (k + 1)

by

Wk+1 =Wk � �fR� IgWk; (21)

where 0 < � < 1 is a scale parameter. R is estimated

of R in slide windows of a small number of samples,

according to the method described in [27].

The advantage of this approach is that the algorithm

and the updating rules are simple. However the con-

vergence point of this criterion (19) is aW� that makes

the matrix R close to an identity matrix (i.e., a spe-

cial diagonal matrix). It is obvious that this condition

is more restrictive than the initial condition described

in the previous section where R must simply be a di-
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Figure 5: Evaluation of the cost function with respect

to the iteration number.

agonal matrix. We conducted many experiments and

found that the crosstalk was between -15 dB and -23

dB. The evaluation of the cost function with respect to

the iteration number is shown in Fig. 5. The mixing

matrix used was M =

�
1 �0:6

0:4 1

�
.

Fig. 6 shows the experimental results of the separa-

tion of two speech sources.

4.3 Hadamard's inequality

The last approach is based on Hadamard's inequal-

ity, Hadamard's inequality [38] of an arbitrary positive

semide�nite matrix R = (rij) is given by

pY
i=1

rii � detfRg; (22)

where the equality holds if and only if the matrix R

is a diagonal matrix. Using equation (22), it can be

proven that:

pX
i=1

log rii � log detfRg � 0: (23)

Using this property, some authors [22, 23, 39] sug-

gest the separation of nonstationary signals by min-

imizing a modi�ed version of Hadamard's inequal-

ity (23) of the estimated source's covariance matrix

R = EfS(n) S(n)T g with respect to the weight ma-

trix W

min
W

pX
i=1

logEfs2i (n)g � log detfEfS(n) ST (n)gg; (24)

The experimental results of this kind of algorithm are

discussed in [22, 40].

5 Conclusion

In this paper, we proved that second-order statis-

tics are su�cient to separate the instantaneous mix-

ture of independent nonstationary signals and that the

decorrelation is equivalent to the separation when the

sources satisfy assumptions H1 to H4. The study was

divided into two parts,

� In the case of two sources, using the geometri-

cal information of the mixing signals, we prove

that one can decorrelate the stationary signals or

separate the nonstationary signals by using only

second-order statistics.

� For the general case, we proved that the diagonal-

ization of the autocorrelation matrix can separate

nonstationary signals.

Finally, the application of these theoretical results in

a real world situation was discussed by examining three

possible approaches. In addition, we should mention

that the �rst algorithm converge in few iterations but

it needs more computation e�ort than the second one.

In the other hand, the experimental study shows that

the convergence of the second one needs much more it-

eration to converge than the �rst one. The comparison

among these three algorithms and theirs performances

will be the subject of a submitted paper [41].
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