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Abstract

In this paper, we propose a new and simple algorithm for blind separation of sources based on geometrical concepts.
This algorithm deals with the instantaneous mixtures and does not require the estimation of high-order statistics (HOS).
The proposed algorithm can separate sources that belong to two di3erent categories: (1) Signals with uniform or close
to uniform probability density function (PDF). (2) Unimodal PDF (including Pascal and Gamma) as well as some real
signals such as speech or music. Unfortunately, the actual version of the algorithm cannot deal with the mixing of signals
from both categories. Finally, the experimental results show good performances and that the separation can be carried
out in a very short time (a few seconds, using Matematica as the programming language and our ultra 30 Sun station).
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Because it can be applied in di3erent situations and has many applications [21], the blind separation of
sources problem (BSS) has been a topic of interest in signal processing since 1984 [13]. In the past decade,
it has been studied by many authors, and many algorithms have been proposed. The BSS involves retrieving
unknown sources X (n) by only observing a mixture Y (n) of them [8,14] (see Fig. 1). In general, authors
assume that the sources are non-Gaussian signals (at most, one of the sources can be a Gaussian signal) and
statistically independent of one another. Therefore, concepts of independent component analysis (ICA) [6]
have been widely used and developed to solve the BSS.

Conventionally, researchers consider three models of the transmission channel: a linear model such as
an instantaneous mixture (i.e., memory-free channel) or a convolutive mixture (i.e., memory channel) or
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Nomenclature

p number of sources and the number of sensors
n time
X (n) = (xi) vector of the sources (xi is the ith source)
Y (n) vector of the observations or the mixing signals
Z(n) vector of the orthogonal signals
S(n) estimated signals
M channel e3ect or the mixing matrix
W separation matrix
G = WM global matrix
K orthogonalization matrix
Ip p× p identity matrix
R(
) rotation matrix
RZ covariance matrix of Z(n)
RY covariance matrix of the mixing signals Y (n)
ġ(u) derivative of g(u)
Sign(x) function sign: Sign(x) = x=|x| if x �= 0 and Sign(x) = 1 for x = 0

a nonlinear channel. The last model has been described very little in general, however some algorithms have
been proposed for speciHc nonlinear models [17,26,28,35]. Concerning the instantaneous or the convolutive
model, di3erent criteria and approaches have been proposed [1,4,5,10,19,22,24], most of which are based on
HOS.

In the general case, when the sources are assumed to be non-Gaussian and independent signals, it has been
proved that the second-order statistics (SOS) are not suIcient to separate the instantaneous mixture (i.e., the
channel e3ect can be represented as the product of the source vector X and a scalar full-rank matrix M) [8,23].
However, many algorithms based only on SOS have been proposed to deal with special signals: correlated
signals with time [3,7,29,36], colored sources [9], and nonstationary signals [25]. Without using statistical
information (moments or cumulants), some researchers proposed a very simple geometrical approach to deal
with special signals (as binary or n-valued) [33]. This algorithm was modiHed to separate analog signals
[32,34]. The idea is based on using the independence concept from the geometrical point of view. In fact,
the scatter plot of two independent signals (i.e., x2(n) against x1(n) for every n) is rectangular. On the other
hand, the mixing e3ect induces a geometrical transformation of that rectangular plot to a parallelogram (see
Fig. 2).
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Fig. 1. Channel model. Fig. 2. Geometrical concepts.
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The algorithm proposed in [31,32] consists of two steps (see Fig. 3):

• Translation of the parallelogram to the Hrst quadrant.
• Determining the slopes of the edges �1 and �2 of the parallelogram. The researchers proved that the

slopes are equal to mint(xi(n)=xj(n)), for i �= j. They showed how the mixing parameters can be easily
obtained from the slopes.

The performances and the limitations of the algorithm were discussed in [31]. The main problem with the
algorithm is the necessity of the translation step. On the other hand, it becomes very unlikely to determine
the edges of the parallelogram in the case of nonuniform PDF signals. If there are more than two sources,
their algorithm cannot be easily generalized.

Recently, another geometrical algorithm was proposed to deal only with speech signals or signals with PDF
close to Gamma PDF [30]. For such signals, it is very diIcult to determine the edges of the parallelogram.
Therefore, the authors suggest an algorithm for determining the slopes of the principle axes of symmetry �1

and �2 of the parallelogram (see Fig. 2). To achieve this goal, the authors divide the mixture plan (the scatter
plot) into many clusters and they chose the direction of the principle axes of symmetry �1 and �2 as the
direction of the more popular cluster (i.e., the cluster which contains the maximum number of observation
samples). One should note that the performance of this new approach depends on the estimation of the slopes
of axes �1 and �2. The latter estimate depends on the number of the clusters and the decision to select the
right one (if the number of clusters is small then the decision can be made easily but the estimation of the
slopes becomes biased, and vice versa).

2. Main idea

In the following, we consider that the mixture is an instantaneous mixture with the same known number
p of sources and sensors. 1 It is known that the separation of the instantaneous mixture can be achieved up

1 The number of sources can be easily determined as the number of the strongest eigenvalue of the covariance matrix of the mixing
signals [11,27].
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to a permutation and a scale factor [6,21] (i.e., the estimated sources S(n) are equal to the sources up to
a permutation and a scale factor). Therefore, the global matrix G = WM (W is the demixing matrix or the
separating matrix) should satisfy the following:

G = PD; (1)

where P is any permutation and D is any full-rank diagonal matrix.
The instantaneous mixture can be considered a geometrical transformation in the observation space (or plane

in the case of two sources) that it transforms, in the case of two sources for example, the scatter plot of the
sources from rectangular to parallelogram. To separate the signals or to cancel the mixing e3ect, we propose
a new algorithm consisting of two steps; see Figs. 1 and 4. To better explain our idea, we Hrst describe the
algorithm in the case of two signals, after which we discuss the general case.

2.1. Transformation

Orthogonal signals Z can be easily generated from the mixing signals Y by Cholesky decomposition [12].
By achieving this, the mixing parallelogram is transformed into a square. Let RY = EYY T be the covariance
matrix of Y (n). Using Cholesky decomposition, one can obtain a square root L of RY such that RY = LLT.
When the sources are statistically independent and the number of sources is equal to the number of sensors,
the mixing covariance matrix RY becomes a full-rank matrix as well as its square root L. Let K = L−1.
Finally, Z can be obtained as Z(n) = KY (n). We should mention that the covariance matrix RZ of Z is equal
to the identity matrix RZ = EZZT = KEYY TKT = L−1RYL−T = Ip; here, Ip is a p× p identity matrix.

2.2. Rotation

The estimated signals S(n) can be obtained from the orthogonal mixing signals Z(n) via rotation by an
angle 
 as S(n) = R(
)Z(n); here

R(
) =
(

cos(
) −sin(
)
sin(
) cos(
)

)
:

Let � be the angle between the Hrst diagonal and the horizontal axis (see Fig. 4). Angle � can be estimated
from the coordinate of the farthest point from the origin. It is clear that the determination of � is not unique
and this is due principally to the permutation indeterminacy; see Eq. (1). Taking into account the fact that
all the physical signals are bounded and using the scale factor indeterminacy (1), one can consider that the
sources have the same maximum amplitude or that the scatter plot of the sources is square. Finally, to separate
the signals, one should rotate the signals Z by an angle 
.


U = �=4 − �: (2)

We should mention that 
U can be obtained using the previous equation when the sources have uniform or
close to uniform PDF (as well as signals with a histogram similar to a rectangle as sinusoidal signals). In the
case of the signals with unimodal PDF the same as the symmetrical Gamma PDF and similar to symmetrical
Gamma (as Cauchy PDF or Laplace’s PDF) or close to symmetrical Gamma (as the speech signals), the
scatter plot of these signals is more likely to be a kind of cross with a disc shape than a rectangle (see Fig.
5). In this case the farthest point (i.e., the second step of our algorithm) will correspond to one of the two
axes of the cross. Therefore 
 should evaluated as:


G = −�: (3)
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Fig. 5. The scatter plot of two speech signals.

3. Separation of multi-sources

Here, we explain how the actual algorithm can be generalized for more than two sources. First of all, the
case of three sources is discussed. Subsequently, we brieMy emphasize the problems and the generalization
process for the case of more than three sources.

3.1. Three sources

Similar to the case of two sources, one should distinguish between the signals with similar or close-to-uniform
PDF and the speech signals or the signals with the Laplacian PDF or Gamma PDF. To Clarify, let us Hrst
discuss the case of uniform PDF signals. In the 3D space of the sources, the scatter plot of the independent
sources X (n) becomes a rectangular parallelipiped (similar to a box) such that its edges are parallel to the
base axes, and its center is at the origin of the axes denoted by the point “O”. On the other hand, the scatter
plot of the mixture signals Y (n) becomes a parallelipiped.

Using the same approach as that in Section 2.1, one can generate three orthogonal signals Z(n) so that
their scatter plot is a cube Co and the center of the cube is the origin of the axes. To separate the sources
up to the permutation and scale factors, one should rotate the cube such that its edges are parallel to the
base axes and its four principal diagonals are deHned by their parametric equations as: D1: x = y = z = t;
D2: − x = y = z = t; D3: x = −y = z = t and D4: x = y = −z = −t. One vertex, say point “A”, of the cube
can be easily determined using the “farthest point from the origin” strategy. One can easily rotate the cube
Co such that point “A” becomes a point on the straight line D1; see Appendix C. In this case, one principal
diagonal of the rotated cube Cr becomes colinear to D1. The position of the cube Cr can be determined up
to one degree of freedom (i.e., a rotation by any angle  around the Hxed principal diagonal or the straight
line D1). Finally, one can Hnd another vertex “B” of the cube Cr (see Appendix D), which is then rotated
around the straight line D1 (using the rotation matrix of Appendix E) by an angle  (see Appendix F) such
that the edges of the Hnal rotated cube will be parallel to the axes or the signals will become independent.
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In the case of speech signals, signals with Laplace PDF, Gamma PDf or close to such PDF, the scatter
plot of three independent zero-mean signals becomes close to star form. 2 Using the same approach as that
in Section 2.1, one can generate three orthogonal signals Z(n) such that their scatter plot is similar to the
shape of the scatter plot of the sources except that it is rotated in 3D space. As in the case of two sources,
using the “farthest point from the origin” strategy one can Hnd a radiating point “A” (i.e., one symmetrical
axis õA) of the scatter plot of Z(n). Therefore the scatter plot of Z(n) can be rotated in 3D space (using
the rotation matrix from Appendix C) such that axis õA becomes colinear with the vertical axis õz and the
obtained scatter plot is denoted by SPr . After rotation, a second symmetrical axis can be found based on the
fact that the “farthest point B” in the horizontal plan oxy is a radiating point of the rotated scatter plot SPr .
Finally, the separation is obtained after the rotation of the scatter plot SPr around the vertical axis õZ such
that õB becomes colinear to the horizontal axis õx using the following Givens matrix:

R(�) =


 cos(�) sin(�) 0

−sin(�) cos(�) 0
0 0 1


 : (4)

Here, � = (1 − Sign(XB))�=2 + arctan(YB=XB), and XB and YB are the coordinates of B.

3.2. General case

The Hrst step (Section 2.1) of the algorithm can be used without any modiHcation. For the second step
(Section 2.2), one should consider p− 1 angles. These angles can be determined from the projection of the
farthest point, and the rotation can be conducted mainly using the Givens rotation matrix [12]. In other words,
one can use an approach similar to that on the 3D case to generalize this approach for more than three sources.
On the other hand, it should be mentioned that to the extent that we increase the space dimensions of the
sources, the number of samples needed to achieve the separation increases rapidly. In the case of two sources,
the size of signals needed to achieve the separation is less than 6000 samples and the minimum number is
three to four hundred samples. However, in the case of three sources, the experimental study showed that
the minimum number of samples is between 9000 and 20,000 samples. Good performances were obtained for
more than 30,000 samples (in the case of speech or musical signals). Due to these limitations, we do not
present here any further details of the experimental results concerning the generalization process. Actually,
we are attempting to modify the second step of the proposed geometrical approach such that it can be easily
applied for a general number of sources, and to improve its performance to achieve the separation using a
small number of samples.

4. Experimental results

We conducted many experiments using di3erent kinds of signals. All of the conducted experiments show
good results. In this section, we present some of the experiment results obtained.

4.1. Two sources

Firstly, we consider two zero-mean signals with uniform PDF and unity variance. The mixing matrix is

M =
(

4 1
2 5

)
:

2 This form is the generalization of the form in the case of two sources; see Fig. 5.
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Fig. 6. The separation of two uniform PDF signals. (a) The original sources, (b) the mixing signals, (c) the estimated signals, (d) the
orthogonal mixing signals.

The estimated signals have been obtained with a global matrix of

G =
(

0:0110814 −0:989114
0:989706 −0:0061244

)
:

We used 3000 samples (see Fig. 6). The experimental study shows satisfactory results even with a few
hundred samples (in the case of uniform PDF, we obtained satisfactory results with 150 samples and very
good results with more than one thousand samples).

Secondly, the separation of two speech signals is presented. The mixing matrix is

M =
(

4 −2
3 8

)
:

The separated signals have been estimated with a global matrix of

G =
(

0:000513767 −0:964096
0:99271 0:00539761

)
:

We used the Hrst 3000 samples of the signals (see Fig. 7). To separate some musical signals, we used up to
6000 samples and we obtained similarly good results.
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Fig. 7. The separation of two speech signals. (a) The original sources, (b) the mixing signals, (c) the estimated signals.

4.2. Three sources

For the separation of three zero-mean sources mixed with an instantaneous mixture and a random mixing
matrix (full-rank), many experimental studies have been conducted. The sources are chosen from three di3erent
categories:

• Uniform or close-to-uniform PDF signals (for example sinusoidal signals).
• Laplacian or Gamma PDF or close to these PDF signals (see Appendix B).
• Speech or music signals are chosen from a wide data base (over 60 di3erent signals of speech (from

women and men) and music, registered under di3erent conditions: e.g., normal room or anechoic room
and di3erent sampling frequencies)

For three zero-mean signals with uniform PDF, good performance results have been obtained with approxi-
mately 10,000 samples (see Fig. 8). In the experiment result shown in Fig. 8, the mixing matrix was

M =


 5 1 −2

0 7 −1:5
2:1 3 6




and the separation was achieved with a global matrix of

G =


−0:00191998 −0:0189407 0:358797

0:59661 0:00140027 −0:00694529
−0:0249461 0:445696 0:00644428


 :

To study the e3ect of the number of samples on the performance of the algorithm, we conducted some
experiments, where using the same mixing matrix and sources, we tried to separate the signals using di3erent
numbers of samples. The experimental study shows that the number of samples has a small impact on the
performances as soon as we can estimate the farthest point belonging to a symmetrical axis of the scatter
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Fig. 8. The separation of three uniform PDF signals. (a) The sources, (b) the mixing signals, (c) the separated signals, (d) the orthogonal
signals, (e) the Hrst and second sources, (f) the Hrst and second mixing signals, (g) the Hrst and second separated signals, (h) the Hrst
and second orthogonal signals.
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Fig. 9. The separation of two speech signals and a music signal. (a) The original sources, (b) the mixing signals, (c) the estimated
signals.

plot. For example, for three zero-mean signals with di3erent Laplacian PDFs, the obtained global matrix was

G =


−0:0409554 1:43742 0:0503483

−1:62211 −0:0579908 0:176867
0:129741 −0:0436741 2:20528




when we used 50,000 samples and

G =


−0:0427005 1:46258 0:0509568

−1:62352 −0:0580412 0:177021
0:106611 −0:0448919 2:22576




for 10000 samples. The mixing matrix was

M =


 8 3:5 −2

1 4 −1:5
3:4 2:5 5


 :

Finally, many experiments were conducted to separate the instantaneous mixture of three speech or music
signals. Good performances were obtained by applying the proposed algorithm for more than 20,000 samples.
Fig. 9 shows the separation of two speech signals (for a woman and a man) and a song with a music signal
using 40,000 samples. The mixing matrix was

M =


 4 −1 2:6

2:1 5:298 2:298
3:399 5:2 6


 ;
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and the global matrix obtained was

G =


 −2:40495 −0:228481 0:0664484

0:405719 −1:38551 0:0576037
0:0603367 0:0520547 1:79789


 :

5. Conclusion

Here, a new and simple algorithm for blind separation of sources based on geometrical concepts is presented.
The algorithm has been presented and tested in the case of two and three sources. The experimental results
show that the performances of the algorithms are very satisfactory even for the separation of real nonstationary
signals such as the speech signals. Even if the algorithm requires thousands of samples (less than 7000 samples
for two signals and over 9000 for three sources), the convergence time is very competitive. The separation
can be carried out in a very short time (a few seconds, using Matematica as the programming language and
an ultra 30 Sun station). The number of samples can be reduced e3ectively to a few hundred samples in the
case of two stationary signals with a uniform or close-to-uniform PDF (as well as the signals with a histogram
similar to a rectangle such as sinusoidal signals). Finally, the experimental studies show that the algorithm is
robust even when the signal-to-noise ratio is approximately 10 dB (see Appendix H).
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Appendix A. Algorithm performances

In this section, we assume that the two sources are zero-mean-bounded signals (−1¡xi ¡ 1; i∈{1; 2})
with uniform PDF. 3 The geometrical approach consists ot two steps: whitening (using the SOS of the mixing
signals Y (n)) and rotation (using the coordinate of the farthest point from the origin in the scatter plot of the
orthogonal signals Z(n)). The estimation errors of the Hrst step basically come from the estimation of SOS
and from numerical algorithms (such as Cholesky factorization). In the literature, there are many reports on
the estimation and the minimization of such errors [2,15,16,18,20]. Therefore, we focus on the second step
or the estimation of the geometrical error assuming that the orthogonal signals are perfect. In this case one
can assume that

Z(n) = R(�)X (n); (A.1)

where R(�) is the rotation matrix of an angle �. The geometrical error occurred when we estimated one vertex
of the square by a point in a small square (with a side of ') near that vertex; see Fig. 10. Based on Eq. (A.1)
and the fact that det R(�) = 1, one can conclude that the joint PDF of Z1 and Z2 is equal to the joint PDF
of the sources. On the other hand, the relationship between the orthogonal signals Z(n) and the sources is
bijective. Therefore, one can prove that the probability of Hnding a point in small squares near the vertices in
the scatter plot of Z(n) is the same as the probability of Hnding a point in small squares (of the same size)

3 The generalization for three sources or signals with di3erent PDFs can be easily developed using approaches similar to those described
in this section.
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near the vertices in the scatter plot of the sources. Using the independence of the sources and the uniform
PDF, one can calculate this probability (see Fig. 10)

Pr(Point at the corner)
=4Pr(Point at one corner) = 4Pr(1 − '¡x1 ¡ 1; 1 − '¡x2 ¡ 1)
=4Pr(1 − '¡x1 ¡ 1) Pr(1 − '¡x2 ¡ 1) = 4(1 − FX (x))2; (A.2)

where FX (x) is the cumulative density function (CDF) of the uniform random variable. In our case, FX (x) =
(1 + x)=2 and Eq. (A.2) can be rewritten as

Pr(Point at the corner) = '2: (A.3)

Let � be the correct angle of the “farthest point from the origin” (or vertex A; see Fig. 10) and let �̃ be
the estimate of � (i.e., AF = ' is the maximum error over the estimate of point A). If we denote )� = �− �̃,
from Fig. 10 we Hnd that

cos()�) =
2 − '√

2
√

2 − 2' + '2
; (A.4)

sin()�) =
'√

2
√

2 − 2' + '2
: (A.5)

Assuming that '�1, one can rewrite Eqs. (A.4) and (A.5) as:

cos()�) = 1 − '2

8
+ O('3); (A.6)

sin()�) =
'
2

+
'2

4
+ O('3); (A.7)

where O('3) is a residual error of the '3 order.
The orthogonal signals Z(n) are equal to the sources up to a rotation matrix. An estimation error on � has

an immediate e3ect over the global matrix G such that:

G = P+R()�); (A.8)

where P is any permutation matrix and + is any full-rank matrix. It can be easily proved that Eq. (A.8)
indicates that the sources will be estimated with a crosstalk of:

crosstalk = tan2()�) 
 '2

4
: (A.9)
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If we want to separate the sources with a crosstalk of −20 dB, then:

crosstalk = −20 dB ⇒ ' = 0:2: (A.10)

and the probability of Hnding a point in a small square near the vertex to estimate � is Pr = '2 = 0; 04 = 4%.
Therefore, using approximately 1000 samples, we consider that one can Hnd approximately 40 good points
near the vertex for the estimation of �.

Appendix B. Di-erent PDFs

In this section, we evaluate some transformation functions that can generate signals with speciHc PDF from
a uniform PDF signal (see the previous section). Let u be a uniform PDF PU (u) signal with 06 u6 1 and
y be a signal with (for example) monolateral exponential PDF, i.e.,

PY (y) =
{

a exp(−ay) where a¿ 0 and y¿ 0;
0 y¡ 0:

(B.1)

Using the previous deHnition, the mean E{y} and the variance ,2
y of y can be easily evaluated as E{y}=1=a

and ,2
y = 1=a2. The CDF of y can also be easily evaluated using Eq. (A.9):

FY (y) =
∫ y

−∞
Py(y) dy =

∫ y

0
a exp(−ay) dy = 1 − exp(−ay): (B.2)

Finally, y can be obtained from samples of u using the inverse of its CDF, i.e., y=g(u)=F−1
Y (y)=−(log(1−

u))=a. We can generate a zero mean and unity variance variable with the monolateral exponential PDF by
yc = ay − 1.

In the same manner, one can Hnd Table 1.

Appendix C. Rotate a 3D vector to speci0c location

In this section, we explain how can we determine a rotation matrix that rotates vector U to make it colinear
with vector V :

U = |U |

 sin(b) cos(a)

sin(b) sin(a)
cos(b)


 and V = |V |


 sin(’) cos(�)

sin(’) sin(�)
cos(’)


 : (C.1)

Here, |U | is the norm of vector U , and the angles a and b (resp. � and ’) are the polar coordinate of the
U (resp: V ); see Fig. 11.

After some algebraic and trigonometric operations, one can determine the global rotation matrix that rotates
U to V as

R =


 cos(�) −sin(�) 0

sin(�) cos(�) 0
0 0 1




 cos(’− b) 0 sin(’− b)

0 1 0
−sin(’− b) 0 cos(’− b)




 cos(a) sin(a) 0

−sin(a) cos(a) 0
0 0 1


 : (C.2)

The rotation matrix R can be seen as a rotation of an angle −a around oz plus a rotation of an angle ’− b
around oy, then a rotation of an angle � around oz.

Finally, the angles a and b (resp. � and ’) can be determined very easily from the coordinate of the vector
U (resp. V ). Let U = (Ux; Uy; Uz)T; in this case one can Hnd that a = arctan(Uy=Ux) if Ux ¿ 0, and that
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Table 1
Di3erent PDFs

PDF DeHnitions Shapes Transformation functions

Monolateral
exponential

{
a exp(−ay) a¿ 0 and y¿ 0
0 y¡ 0

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5
a = 0.5

Monolateral exponential PDF

−log(1 − u)=a

Rayleigh

{
y
a2 exp(−y2

2a2 ) y¿ 0
0 y¡ 0

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2
a = 0.5

Rayleigh′s PDF

√
−2a2 log(1 − u)

Laplace |a|
2 exp(−|ay|)

-4 -2 2 4

0.05

0.1

0.15

0.2

0.25

a = 0.5

LaplacianPDF

{
log(2u)=a if 06 u6 0:5
−log(2 − 2u)=a if 0:56 u6 1

Cauchy |b|
�(b2+(x−a)2)

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

0.6

a = 1, b = .5

Cauchy′s PDF

|b| tan(�u− �=2) + a

Gaussian
exp(− (y−a)2

2b2 )

b
√

2�

-1 1 2 3

0.2

0.4

0.6

0.8

1
a = 1, b = .5

Gaussian PDF

a + b
√

−2 log(u) cos(2�v)
v is similar to u

a = � + arctan(Uy=Ux) if Ux ¡ 0. Therefore, one can write:

a =
1 − Sign(Ux)

2
� + arctan

(
Uy

Ux

)
; (C.3)

b =
1 − Sign(Uz)

2
� + arctan



√

U 2
x + U 2

y

Uz


 : (C.4)
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Fig. 11. Rotation of 3D vector. Fig. 12. The cube vertices.

Appendix D. Finding another vertex

Let us assume that one vertex denoted by point A (see Fig. 12) of a given cube is known. How can
we Hnd another vertex (let us say B; E or D). These three points are similar and can be used to solve
the problem of blind separation of sources up to a permutation. These are the point of the cube such that
|ÕB|= |ÕA|=

√
3

2 |ÃB|. To Hnd one point among the above three vertices, one could select a set of points 21

such that:

B∈21 ⇔



‖ÃB| − 2√
3
|ÕA‖ ¡ e1;

and
‖ÕB| − |ÕA‖ ¡ e2;

(D.1)

where e1 and e2 are small numbers that describe the precision of the estimation 4 . Finally, we select a point
“B” in the previous set 21 such that:

min
B∈21

((
|ÃB| − 2√

3
|ÕA|

)2

+ (|ÕB| − |ÕA|)2

)
: (D.2)

4 In our experiments, we chose |ÕA|
100 ¡e1 = e2 ¡ |ÕA|

10 . The experimental results show that the values of e1 and e2 do not have a
major e3ect on the performance of the algorithm.
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Appendix E. Rotation matrix around a 0xed straight line

In this section, we determine the rotation matrix of an angle  around a straight line � deHned by the
parametric equation

�




x = at;
y = bt;
z = ct:

(E.1)

Using the previous Eq. (E.1), one can determine a plan P perpendicular to the line �; P: ax + by + cz = 0.
Any straight line in P is perpendicular to �. Let us consider straight line D1 given by

D1




x = −ct;
y = 0;
z = at:

(E.2)

Let P2 be a plan perpendicular to D1 given by P2: cx − az = 0. Now let D2 = P ∩ P2 such that

D2




x = at;
y = − a2+c2

b t;
z = ct:

(E.3)

Let ũ; ṽ and w̃ be unite norm vectors colinear to D1; D2 and �, respectively. It is clear that (o; ũ; ṽ; w̃) can
be considered orthonormal basis axes.

To rotate a vector or a point around � by an angle  , one can Hrst transform the coordinate of that
point from the original basis axes (o; ĩ; j̃; k̃) to (o; ũ; ṽ; w̃) by simple multiplication of the vector (or point)
coordinates by the matrix M = (̃u ṽ w̃). In the new coordinate system, the rotation can be carried out using
a Givens rotation matrix. Later on, we transform the obtained coordinates in the old reference basis axes
(o; ĩ; j̃; k̃). One can assume that using a rotation matrix:

RR( ) = M:


 cos( ) sin( ) 0

−sin( ) cos( ) 0
0 0 1


MT; (E.4)

M is an orthogonal matrix.
In the case where � is given by x = y = z = t=

√
3, one can Hnd that

D1




x = − t√
2

y = 0
z = t√

2

and D2




x = t√
6

y = − 2t√
6

z = t√
6

:

Finally, the necessary rotation matrix around � is given by

RR( ) =




1+2 cos( )
3

1−cos( )+
√

3 sin( )
3

1−cos( )−√
3 sin( )

3
1−cos( )−√

3 sin( )
3

1+2 cos( )
3

1−cos( )+
√

3 sin( )
3

1−cos( )+
√

3 sin( )
3

1−cos( )−√
3 sin( )

3
1+2 cos( )

3


 : (E.5)

Appendix F. The necessary angle  

Here we assume that one vertex “A” of a cube is known and that one of its principal diagonals is Hxed.
Using the approach described in Appendix D, we can determine another vertex “B”. In this section, we answer
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the following question: what is the angle  that can be used to rotate the cube around the Hxed diagonal such
that ÃB becomes parallel to one of the reference axes (õx; õy; õz)?

Let B2 be the desired position of B and let ÃB2 be parallel to õx (see Fig. 12):

ÕA =


 xA

yA

zA


 (F.1)

and

ÃB2== õx ⇒ ÕB2 =


−xA

yA

zA


 :

Let ÕB = (xB; yB; zB)T. Using the results in Appendix E, one can Hnd that the angle  needed to rotate the
cube such that B becomes B2, should satisfy the following equation:

−xA
yA

zA


=




1+2 cos( )
3

1−cos( )+
√

3 sin( )
3

1−cos( )−√
3 sin( )

3
1−cos( )−√

3 sin( )
3

1+2 cos( )
3

1−cos( )+
√

3 sin( )
3

1−cos( )+
√

3 sin( )
3

1−cos( )−√
3 sin( )

3
1+2 cos( )

3




 xB

yB

zB


 : (F.2)

Using the previous equation, one can write
 2xB − yB − zB

√
3(yB − zB)

−xB + 2yB − zB
√

3(zB − xB)
−xB − yB + 2zB

√
3(xB − yB)


( cos( )

sin( )

)
=


−3xA − xB − yB − zB

3yA − xB − yB − zB
3zA − xB − yB − zB


 : (F.3)

Let us consider that U = (2xB − yB − zB;−xB + 2yB − zB;−xB − yB + 2zB)T; V = (
√

3(yB − zB);
√

3(zB −
xB);

√
3(xB − yB))T; W = (−3xA − xB − yB − zB; 3yA − xB − yB − zB; 3zA − xB − yB − zB)T, and F = (U V ). Eq.

(F.3) derived from three equations and two variables (cos( ) and sin( )). Therefore, it will have a unique
solution if and only if (i3) Rank(U V W ) = 2, no solution i3 Rank(U V W ) = 3 and multiple solutions 5

i3 Rank(U V W )¡ 2.
In our case, point “A” should be a point of straight line D1: x = y = z = t, thus:

xA = yA = zA; (F.4)

and point “B” should satisfy the following two constraints (see Fig. 12):

|ÕB| = |ÕA|; (F.5)

|ÃB| = 2|xA|: (F.6)

Using Eqs. (F.4)–(F.6), one can prove that:

x2
B + y2

B + z2
B = 3x2

A; (F.7)

xB + yB + zB = xA: (F.8)

From Eqs. (F.4), (F.5) and (F.6), one can prove that det(U V W )=0 and Rank(F)=Rank(U V )=2; ∀xA �= 0.
The last statement indicates that Eq. (F.3) has a unique solution. To reduce the e3ect of the estimation error,

5 In our case, the two variables (cos( ) and sin( )) are dependents, therefore a solution for the system should satisfy the dependence
relation of the two variables.
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one can determine the corresponding value 6 of cos( ) and sin( ) by(
cos( )
sin( )

)
= (FTF)−1FTW: (F.9)

Appendix G. The algorithm

In this section, we summarize the proposed algorithm. Note that if the number of sources is p then the
algorithm consists of p steps, as one transformation and p − 1 rotation. For example, in the case of p = 3,
we can separate the sources using the following three steps:

1. Using SOS, one can transform the scatter plot of mixing signals from a parallelipiped to a cube C1.
2. One can Hnd the “farthest point A” from the origin and use its coordinates to rotate the cube C1 obtained

such that this axis of symmetry õA will be colinear with straight line D1: x =y = z = t if the signals have
PDF close to uniform, or the vertical axis õz if the signals are speech or have PDF similar or close to
Laplacian PDF. After rotation, the rotated cube is denoted by C2.

3. Finding another axis of symmetry õB of the cube C2. The separation is obtained when the C2 is rotated
around its Hrst axis of symmetry õA such that ÃB becomes parallel to the horizontal axis õx.

Appendix H. Instantaneous mixture with additive noise

It is known that the geometrical approach is more sensitive to noise than the statistical approach. On
the other hand, it seems that our geometrical algorithm (the second step) is very non-robust and has bad
performance.

To improve the robustness of our algorithm (see Appendix G), we propose here a heuristic and simple
modiHed approach. In the following, we will assume that the mixture is an instantaneous one with additive
noise. In this case, the orthogonal signals Z(n) are given by

Z(n) = UX (n) + B(n): (H.1)

Here U = K:M is the orthogonal matrix and B(n) is the zero-mean noise vector. In this case, point A of Fig.
10 cannot be estimated correctly. Instead of point A, one can estimate a point A′ within a disk centered at A
and its radius depends on the noise power (and amplitude). On the other hand, it has been shown in Appendix
A that any point within the trust region (i.e., the small square near the vertex) is suIcient to estimate the
diagonal angle of the scatter plot of the orthogonal signals. The last statement proves that the actual version
of the algorithm is robust against small noise perturbations.

To improve the robustness of our algorithm, one can consider reference point A0 as the barycenter of some
candidate points within set E (i.e., A′ ∈E ⇒ A′ is near vertex A). This simple idea can be realized by the
following algorithm:

1. Let Vref = 0 be the initial value of the barycenter vector (i.e., ÕA0).
2. Let V be the coordinate of the actual sample point.
3. If ‖V‖¿ (1 + '1)‖Vref‖ then put Vref = V and k = 0.
4. Otherwise, if the scalar product V:Vref ¿ (1 − '2)‖Vref‖, then V is a point near Vref and it is in set E.

Therefore, we should increase K (i.e., k + +) and put Vref = ((k − 1)Vref + V )=k.

6 In the rotation matrix (E.5), we use the cosine and the sine of  . However, the value of  can be easily estimated.
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Fig. 13. The separation of instantaneous mixture with additive noise. (a) The original sources, (b) the orthogonal signals, (c) the estimated
signals.

5. Repeat from step 2 till the stop of the algorithm. The stop can be determined based on the number of
samples or any other criterion.

Here, '1 and '2 are two small numbers. Using the modiHed algorithm, many experiments have been conducted
and the separation has been obtained even with noise mixture. Fig. 13 shows the separation results of model
(H.1). In that Hgure, the signals are two uniform PDF signals, the noise is Gaussian noise with SNR =13 dB,
the orthogonal mixing matrix

U =
(

0:25885 −0:965918
0:965918 0:25885

)

and global matrix

G =
(−0:0650625 0:997881

−0:997881 −0:0650625

)
:

Finally, we should mention that we used 1000 samples in that experiment, '1 = 0:12 and '2 = 0:5.
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