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Abstract

In this paper, we present a new subspace adaptive algorithm for the blind separation problem of a convolutive mixture.
The major advantage of such an algorithm is that almost all the unknown parameters of the inverse channel can be
estimated using only second-order statistics. In fact, a subspace approach was used to transform the convolutive mixture
into an instantaneous mixture using a criterion of second-order statistics. It is known that the convergence of subspace
algorithms is in general, very slow. To improve the convergence speed of our algorithm, a conjugate gradient method was
used to minimize the subspace criterion. The experimental results show that the convergence of our algorithm is
improved due to the use of the conjugate gradient method. � 2001 Elsevier Science B.V. All rights reserved.

Keywords: Subspace approach; Second- and higher-order statistics; Sylvester matrix; Blind separation; Convolutive mixture; Conjugate
gradient

1. Introduction

Since 1990, the blind separation of sources has been an important issue for the signal processing
community. In e!ect, it can be found in many practical applications and situations (radar control [11], the
study of electrocardiogram signals [9], control of a nuclear reactor [12] and the study of seismic signals
[38]). This problem was "rst introduced by HeH rault et al. [17], where they proposed a heuristic algorithm
based on a biological model [19]. The blind separation problem involves the retrieval of the sources from
observations of unknown mixtures of unknown sources [32].

Over the last 15 years, many methods and di!erent algorithms have been proposed to solve this problem in
the case of an instantaneous mixture (or memoryless channel) [3,5,6,24,26]. Since 1990, a few methods for
source separation have been proposed in the case of convolutive mixtures (i.e. the channel e!ects can be
considered as a linear "lter). These methods were generally based on high-order statistics [10,20,25,36]. The
major problems of the algorithms based on high-order statistics are the estimation of these statistics and the
estimation errors [31].
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Nomenclature

A mixing matrix of the residual instantaneous mixture
G left inverse of T

�
(H)

G
�

ith bloc line of G
G another version of G
H(i) q�p real matrix which represents the impulse response of the channel at time i
H

��
q�p non-polynomial matrix

H(z)"(h
��

(z)) channel "lter (h
��

(z) is the "lter between the ith source and the jth sensor)
M degree of the channel
M

�
degree of the ith column of H(z)

n time
N number of observations
p number of sources
q number of sensors
R
�
(m) correlation matrix of the sources

R
�
(m) correlation matrix of the observations

S(s
�
)(n) vector of the sources (s

�
is the ith source)

S
���

(n) giant vector which contains (M#N#1) vectors of the sources
T
�

(H) Sylvester's matrix
W separation matrix of the residual instantaneous mixture
X(n) estimated signals
>(n) vector of the observations
>

�
(n) giant vector which contains (N#1) vectors of the observed signals (>(n),>(n!1),2)

Yn big matrix formed by the observed signals
Z(n) output of the subspace algorithm

� In the decorrelation approaches, the authors consider di!erent assumptions, such as colored signals [8], the system should be strictly
dynamic and have some special relation with the minimum phase [22], or the channel should be strictly causal H(0)"0 [39]. On the
other hand, the subspace approach generally leads to very elegant algorithms from a theoretical point of view, and is based on a strong
theoretical background. It has been developed over many years in control theories [32].

Recently, it has been proven [2,8,13,16,22,27,33,39,40] that the convolutive model can be estimated using
only second-order statistics. Most of these methods,� in general, are based on subspace theories and
approaches. The advantage of subspace methods is that by using only second-order statistics (but more
sensors than sources), the sources can be separated (with some assumptions concerning the channel "lters) or
the convolutive mixture can be identi"ed up to an instantaneous mixture. The subspace methods are highly
re"ned from the theoretical point of view, but in general, the convergence of these algorithms is relatively
slow due to the minimization of cost functions containing large matrices.

In Ref. [29], we proposed a subspace algorithm for a convolutive mixture model using the least-mean-
square (LMS) algorithm. Unfortunately, that algorithm was very slow due to the minimization, using the
LMS algorithm, of a cost function composed of large matrices. In fact, the subspace algorithm requires more
than 7000 iterations for convergence and more than several hours of computing time using a sparc ultra 30
and C code. In this paper, we propose another criterion, also based on the subspace approach, which can be
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Fig. 1. General structure.

�This assumption is used in the second step of the proposed algorithm to achieve the separation of the residual instantaneous mixture.

minimized using the conjugate gradient algorithm [7]. In theory, the conjugate gradient algorithm can
converge within a few iterations (less than the dimension of the updated vector). The convergence of the
proposed method is relatively fast, and may be achieved in less than 1000 iterations and needs less than half
an hour of computing time using the same computer.

The algorithm proposed in this paper can be broken down into two steps. First, using only second-order
statistics, we reduce the convolutive mixture problem to an instantaneous mixture problem. In the second
step, we only separate sources consisting of a simple instantaneous mixture according to the algorithm
proposed in Ref. [34] (typically, most of the instantaneous mixture algorithms are based on fourth-order
statistics).

2. Channel model

Let us assume that p unknown sources S(n) are statistically independent of each other (this assumption is
very common in the blind separation "eld�). In addition, let >(n) denote the q observed signals (see Fig. 1).

If we consider the mixture to be convolutive, the relationship between the sources and the observed signals
can be given by

>(n)"[H(z)]S(n), (1)

where a q�p polynomial matrix H(z)"(h
��

(z)) represents the channel e!ects, and h
��

(z) are assumed to be
"nite impulse response (FIR) "lters.

Let M denote the degree of the "lter matrix H(z), i.e., M is the highest degree of the "lters h
��

(z) (∀1)i)q
and ∀1)j)p). H(i) denotes the q�p real constant matrix corresponding to the impulse response of the
channel H(z) at time i:

H(z)"(h
��

(z))"
�
�
���

H(i)z��. (2)

Eq. (1) can be rewritten as

>(n)"
�
�
���

H(i)S(n!i), (3)
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�The degree of the jth column of H(z) equals the maximum degree of the jth column component h
��

(z), ∀1)i)q.
� In our approach, one should know the number of sources and the "lter degree to evaluate the rank of T

�
(H) (N and q are

known). In the literature, there are many references which emphasize the problems of the estimation of the source number and
the degree of the "lter, such as[1,2,28,29].

where S(n!i) is the p�1 source vector at time (n!i). Considering (N#1) observations of the mixture
vector (N'q) and using the following notations:

>
�

(n)"�
>(n)

�

>(n!N)� and S
���

(n)"�
S(n)

�

S(n!M!N)�, (4)

model (3) can be rewritten as

>
�

(n)"T
�

(H)S
���

(n), (5)

where the q(N#1)�p(M#N#1) matrix T
�

(H) is the Sylvester matrix corresponding to H(z). In Ref.
[21], the Sylvester matrix is given by

T
�

(H)"�
H(0) H(1) H(2) 2 H(M) 0 0 2 0

0 H(0) H(1) 2 H(M!1) H(M) 0 � �

� � � � � � � � 0

0 2 2 2 0 H(0) H(1) 2 H(M)�. (6)

In the following we will assume the following three assumptions:

H1: The number of sensors is larger than the number of sources, p(q. (A method for estimating the number
of sources is given in Ref. [2].)

H2: H(z) is irreducible (Rank(H(z))"p,∀z excluding z"0 but including z"R).
H3: H(z) is a column-reduced matrix:

H(z) can be written as

H(z)"H
��

diag�z��� ,2, z��	�#H
�
(z), (7)

where M
�

denotes the degree� of the jth column of H(z), H
��

is a non-polynomial matrix, and H
�
(z) is

a polynomial matrix whose degree of the jth column is less than M
�
. By de"nition, H(z) is reduced by

column if and only if H
��

is a full-rank matrix.
As long as p(q, these assumptions have been shown in Ref. [16] to be realistic (it is easy to verify that if
H(z) is a square column reduced and non-constant matrix, then the rank of H(z) will be less than p, at least
for some z

�
such that det(H(z

�
))"0). It has been shown in Ref. [4,21] that under the assumptions H2 and H3:

�Rank(T
�

(H))"p(N#1)#
	
�
���

M
�
, (8)

as long as N*�	
���

M
�
. One should note that p(N#1)#�	

���
M

�
is precisely the number of non-zero

columns of T
�

(H). In particular, if all the degrees (M
�
)
����	

coincide with M, then, T
�

(H) is full column rank
if N*pM. Therefore, T

�
(H) has a left inverse.
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	 If this assumption is not satis"ed, then, by adopting another parameterization also based on the Sylvester matrix, it is possible to
separate the sources [27,28].


G
�

is p�q(N#1) matrix and G"(G�
�
,2,G�

�����
)�.

�The non-zero components Y
��

of the matrix Y can be calculated in a simple manner from the components of the vectors
>(n)"(y

�
(n),2, y



(n))� using

Y
�����
�����������

"y
���� 
���

(n!i%q),

Y
���������
�����������

"!y
� ��� 
���

(n#1!i%q),

where mod is modulo, i%q is the quotient of i divided by q, 0)i(q(N#1) and 0)j((N#M).

3. Criterion and constraint

Let us assume that the degrees M
�

are equal	 to M:

M
�
"M ∀i3�1,2, p�. (9)

Generalizing the method proposed by Gesbert et al. [14] for identi"cation (in the identi"cation problem,
the authors assume that they have one source, p"1, and that the source is an independent identically
distributed (iid) signal), we propose the estimation of a left inverse matrix of the Sylvester matrix ¹

�
(H) by

adaptatively minimizing a cost function.
It is obvious from Eqs. (4) and (5) that the source separation will be achieved by estimating S

���
(n).

Consequently, the separation can be performed by estimating a (M#N#1)p�q(N#1) left inverse matrix
G of the Sylvester matrix T

�
(H), which exists if the matrix T

�
(H) has a full rank.

Assuming that G is the left inverse of T
�

(H), we have

GY
�

(n)"S
���

(n),

GY
�

(n#1)"S
���

(n#1). (10)

Denoting the ith block row
 of G by G
�

and using Eq. (10), it can easily be proven that

GY(n)"(G
�
,G

�
,2,G

�������
)�

>
�

(n) 0 2 0

!>
�

(n#1) >
�

(n) 0 �

0 !>
�

(n#1) � �

� � � 0

0 � !>
�

(n#1) >
�

(n)

0 2 0 !>
�

(n#1)
� ,

"0. (11)

Here, G"(G
�
,G

�
,2,G

�������
) is a p�q(N#1)(M#N#1) matrix and Y� is a q(N#1)

(M#N#1)�(N#M) matrix de"ned by the last equation (11). From the same equation, a simple criterion
can be derived:

min
G

G
��
�

����

Y(n)Y�(n)G�. (12)

The sum operation is added to increase the performance of the experimental results and the robustness of
the algorithm (in our experimental study, we used 20(n

�
!n

�
(50).
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�The operator Col accords to a m�n matrix G"(g
��

) a mn vector <"(v
�
) such v

��������
"g

��
.

The minimization of the cost function in Eq. (12) does not yield the Moore}Penrose generalized inverse
(pseudoinverse) of the Sylvester matrix T

�
(H), but a (M#N#1)p�q(N#1) matrix G which satis"es

GT
�

(H)"�
A 0 0 2 0

0 A 0 � �

� � � � �

0 � � A 0

0 0 2 0 A�, (13)

where A is an arbitrary p�p matrix (see Appendix A). Using Eqs. (5) and (13), we "nd that

G>
�

(n)"�
AS(n)

�

AS(n!M!N)�. (14)

So as the algorithm converges, the estimated signals become an instantaneous mixing of the sources
(according to matrix A).

Finally, to avoid the spurious solution G"0 and force the matrix A to be an invertible matrix, we propose
the minimization subject to the constraint

G
�
R
�
(n)G�

�
"I

	
, (15)

where G
�

is the "rst block row p�q(N#1) of G, R
�
(n)"E>

�
(n)>

�
(n)� is the covariance matrix of>

�
(n) and

I
	

is a p�p identity matrix. If the above constraint is satis"ed and G1 is such that G
�
Y
�

(n)"AS(n), then

G
�
R
�
(n)G�

�
"AR

�
(n)A�"I

	
, (16)

where R
�
(n)"ES(n)S(n)� is the source covariance matrix. R

�
(n) is a full rank diagonal matrix as a result of the

statistical independence of the p sources from each other. When Eq. (16) is satis"ed, matrix A becomes
invertible. So, separation of the residual instantaneous mixture becomes possible using any algorithm for the
separation of an instantaneous mixture (see Appendix B).

In our simulation, the residual instantaneous mixture is separated according to Ref. [34]. In that paper, the
blind separation of an instantaneous mixture is done using a Levenberg}Marquardt method to minimize
a cost function based on the fourth-order cross-cumulant.

4. Algorithm

In order to experimentally improve the performance of our algorithm, we attempted to minimize the cost
function in Eq. (12) using a conjugate gradient algorithm [7]. The algorithm proposed by Chen et al. [7] can
minimize a cost function f (<) with respect to a vector <. In theory, this algorithm can converge in a number
of iterations which is less than the dimension of <.

In our case, the cost function (12) must be minimized with respect to a p�q(N#1)(M#N#1) matrix G.
It was shown, in our previous study [23], that such an operation can be performed using the Col� operator.
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Fig. 2. The convergence of the sub-space criterion.

Unfortunately, this approach has many experimental problems due to the minimization of a cost functions
containing huge matrices, see Ref. [23]. Consequently, we suggest here, that the cost function in Eq. (12)
should be decomposed into p cost functions, where each one is dependent only on one row of G (see Appendix
C). We can then easily apply the conjugate gradient algorithm to minimize our criterion.

Finally, the constraint in Eq. (15) can be satis"ed easily by a simple Cholesky decomposition, then GH
�

can
be normalized by GH

�
"(G

�
R
�
(n)G�

�
)����G

�
at each iteration. In addition, the source separation of the

instantaneous residual mixture is achieved according to the method proposed in Ref. [30] and the estimates
of the di!erent statistics are achieved according to Ref. [31].

5. Experimental results

Many experimental studies show that for two stationary sources, the convergence of the subspace criterion
(12) is attained with less than 1000 iterations. In the experiment shown in this section, the convergence was
attained with 800 iterations (see Fig. 2).

In that experiment, four sensors q"4 and two stationary sources p"2 are used:
� The "rst source is a signal with a uniform probability density function (pdf).
� The second signal is the output of an moving average (MA) "lter h(z)"1#0.5z��!0.4z��#0.2z��,

which has a signal with uniform pdf as the input.
The channel e!ect H(z) is considered as a 4�2 matrix of "nite-duration impulse response (FIR) "lters of

fourth degree (M"4):

H(z)"�
!1!2z��#z��#1.5z��#z�� z��#z��#2z��#1.5z��

2!4z��#4z�� 1!2z��#1.5z��#z��#0.5z��

!1!z��#0.4z��#3z��!z�� 3!2z��#2z��#z��

!2#z��#4z��!1.5z�� 1#2z��!2.5z��!z��#0.4z��� . (17)

Fig. 3 shows that the objective of "rst step of the algorithm was achieved, with G.T
�

(H) being a block
diagonal matrix (where A is a 2�2 matrix, see Eq. (13)). Therefore, the two (p"2) output signals z

�
(n) are

given by Z(n)"(z
�
(n), z

�
(n))�"AS(n), and the separation of the instantaneous residual mixture is achieved

using the instantaneous algorithm [30]. The convergence speed of this step is shown in Fig. 4.
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The convergence of the instantaneous criterion

Fig. 3. Performance results: G.T
�

(H) should be a block
diagonal matrix.

Fig. 4. Performances of the instantaneous residual mixture
separation.

�Concerning the sensitivity of the algorithm to noise, we found, in a recent study of a similar approach [35], that the performance of
the algorithm is satisfactory for reasonable RSB (around 20 dB).

��For more information concerning the relationship between the distribution of signals and the geometrical form plotted by these
signals in their own plane, see Ref. [37].

Finally Fig. 5 shows the behavior of our algorithm and its performance.� In the "gure, we plot the various
signals in their own planes. In Fig. 5, it should be noted that the sources s

�
(n) and s

�
(n) are statistically

independent as are the estimated signals x
�
(n) and x

�
(n) (because we obtained a rectangular shape��). In

addition, Fig. 5(c) shows that the output signals may be obtained by mixing independent sources with the
help of an instantaneous mixture. Finally, the mixing signals are given in Fig. 5(b) and the estimated sources
in Fig. 5(d).

Even if the convergence of this algorithm is attained within a small number of iterations (in general, less
than 1000 iterations are needed), the convergence time is relatively important due to large matrices in the cost
function. In e!ect, we are working toward improving the algorithm convergence, so we can separate
numerous sources within a short time.

6. Conclusion

In this paper, we present a new subspace adaptive algorithm to estimate the sources, using the statistics of
observed signals issued from a convolutive mixing of the sources.

The main idea behind this algorithm is the use of a subspace approach to obtain the inverse of the Sylvester
matrix corresponding to the channel e!ects. In other words, by minimizing a second-order statistics criterion,
we can simplify the original problem by transforming the mixture from a convolutive one to an instantaneous
one. The separation of the residual instantaneous mixture can be done using any instantaneous mixture
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Fig. 5. Experimental results: (a) sources signals s
�
!s

�
; (b) mixing signals y

�
!y

�
; (c) "rst step of the sub-space algorithm z

�
!z

�
;

(d) estimated signals x
�
!x

�
.

��The mixing matrix A of the residual mixture is p�p, therefore the high-order statistics are used to estimate only p� coe$cients
instead of pqM coe$cients of H(z) (for example, when p"2, q"4 and M"10, there are 80 coe$cients in H(z) and only four
coe$cients in A).

algorithm, typically based on fourth-order statistics. Consequently, we "nd that most of the inverse channel
parameters can be estimated using only second-order statistics.��

To improve the convergence speed and the performance of the algorithm proposed in this paper, the
minimization of the proposed second-order statistics criterion was achieved using a conjugate gradient method.

Finally, the experimental study shows that for stationary signals, the algorithm convergence is performed
in less than a 1000 iterations and satisfactory experimental results were obtained (the cross-talk is about
!22 dB). Unfortunately, we did not obtain similar results for nonstationary signals such as speech signals.
We are aiming to improve the algorithm by modifying the criterion and the constraint, or using a preprocess-
ing algorithm [35]. Therefore, it can yield satisfactory results even if the sources are strongly non-stationary
signals such as speech signals.
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Appendix A. Solution: type and uniqueness

In this section, we will show that a matrix G satis"es (11) if

GT
�

(H)"�
A 0 0 2 0

0 A 0 � �

� � � � �

0 � � A 0

0 0 2 0 A�, (A.1)

where A is an arbitrary p�p matrix. In fact, it is easy to prove, from Eq. (11), that

G
�
>

�
(n)"G

���
>

�
(n#1). (A.2)

Using Eq. (5), Eq. (A.2) can be rewritten as

G
�
T
�

(H)S
���

(n)"G
���

T
�

(H)S
���

(n#1), (A.3)

∀1)i)M#N. Using this Eq. (A.3), we can prove that

[I
�����	

0
	
]GT

�
(H)S

���
(n)"[0

	
I
�����	

]GT
�

(H)S
���

(n#1), (A.4)

where I
�����	

is the (M#N)p�(M#N)p identity matrix and 0
	

is a (M#N)p�p zero matrix. Let
A denote a (M#N#1)p�(M#N#1)p matrix, such that GT

�
(H)"A. Using de"nition (4) and Eq.

(A.4), we can write

[0
	

[I
�����	

0
	
]A]S

�����
(n#1)"[[0

	
I
�����	

]A 0
	
]S

�����
(n#1). (A.5)

Let B denote the (M#N)p�(M#N#2)p matrix de"ned by

B"[0
	

[I
�����	

0
	
]A]![[0

	
I
�����	

] A 0
	
].

Additionally, let us denote by V
�

the (M#N#2)p-dimensional vector de"ned by V
�
"S

�����
(n).

Eq. (A.5) can then be written as

BV
���

"0. (A.5a)

From Eq. (A.5a), one can conclude that

V
���

3Null�B�, (A.5b)

where Null is the null space of B. Assuming that the sources are persistently exciting such that one can obtain
(M#N#2)p linearly independent vectors V

�
, i3��

�
,2,�

�������	
� and �

�
are integers such as

�
�
(�

�
(2(�

�������	
. In this case, using Eq. (A.5b) and the fact that Eq. (A.5) should be satis"ed for

every n, one can write that

dim�Null�B��"(M#N#2)p. (A.5c)

On the other hand, it is known [18] that

dim�Null�B��#Rank�B�"(M#N#2)p. (A.5d)

Using Eqs. (A.5c) and (A.5d), one can conclude that Rank�B�"0 or that B"0. Therefore, one can write

[0
	

[I
�����	

0
	
]A]"[[0

	
I
�����	

]A 0
	
] (A.6)
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Finally, we can represent matrix A in di!erent ways:

A"(A
��

)"�
A

�
A

�
�"�

A
�

A
�
�, (A.7)

where A
��

is a p�p matrix, A
�

and A
�

are p�(M#N#1)p matrix and A
�

and A
�

are the
(M#N)p�(M#N#1)p matrix. Using Eqs. (A.7) and (A.6), it is easy to show that

[0
	

A
�
]"[A

�
0
	
]N�

A
��

"0 ∀2)i)M#N#1,

A
��������

"0 ∀1)i)M#N,

A
��

"A
����������

∀1)i)M#N and 1)j)M#N.

(A.8)

From Eq. (A.8), Eq. (A.1) is easily derived.

Appendix B. Consistent of the criterion and the constraint

In this section, we answer the question: Are Eqs. (12) and (15) consistent? From Appendix A, we know that
the solution of Eq. (12) belongs to a set of matrices � such that

if G3� � GT
�

(H)"�
A 0 0 2 0

0 A 0 � �

� � � � �

0 � � A 0

0 0 2 0 A� , (B.1)

where A is a p�p matrix. On the other hand, the output of the subspace part Z(n) is obtained by

Z(n)"[I
	
,0,2,0]G>

�
(n). (B.2)

In this case, one can rewrite constraint (16) as

R

"EZ(n)Z�(n)"I

	
. (B.3)

Using the two Eqs. (B.1) and (B.3), one can prove that matrix A belongs to a set of matrices u:

A3u � AR
�
(n)A�"I

	
. (B.4)

Let K denote a square root of R
�
(n) (K can be obtained by di!erent methods, such as Cholesky's method

[15]). Let �"K��; the matrix K is a full rank matrix because R
�
(n) is a full rank matrix. Now, one can

rewrite

A3u � �� � A"��, (B.5)

here � is any p�p orthogonal matrix. Therefore, A can be obtained up to an orthogonal matrix and one
needs another stage based on high-order statistics to achieve the separation.
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��By example, G
�

can be normalized by GH
�
"(G

�
R

�
(n)G�

�
)����G

�
at each iteration.

Appendix C. The algorithm for two sources

To explain our idea, let us consider the simple case of two sources p"2. Let us denote the ith row of G by
G

�
. Now, constraint (15) can be rewritten as

�
G

�
G

�
��

R
�
(n) 0


�����
0�

�����

0

����������

�(G�
�

G�
�
)"�

1 0

0 1�, (C.1)

where 0

�����

is a q(N#1)�q(M#N)(N#1) zero matrix and 0

����������

is a q(M#N)(N#1)�
q(M#N)(N#1) zero matrix. Now, it is easy to show that the algorithm can be divided into two steps:

� The "rst step involves of the estimation of G
�
. Therefore, the cost function (12) and the constraint (C.1)

become

�
minG

�
G

�
���

����
Y(n)Y�(n)G�

�

with respect to G
��

R
�
(n) 0


�����
0�

�����

0

����������

�G�
�
"1.

(C.2)

� The second step involves the estimation of G
�
. In this case, cost function (12) and constraint (C.1) become

�
minG

�
G

�
���

����
Y(n)Y�(n)G�

�

with respect to G
��

R
�
(n) 0


�����
0�

�����

0

����������

�G�
�
"1

and G
��

R
�
(n) 0


�����
0�

�����

0

����������

�G�
�
"0.

(C.3)

Eq. (C.3) can be derived as:

�
minG

�
G

�����
����

Y(n)Y�(n)#

�
R

�
(n) 0


�����
0�

�����

0

����������

�G�
�
G

��
R
�
(n) 0


�����
0�

�����

0

����������

��G�
�

with respect to G
��

R
�
(n) 0


�����
0�

�����

0

����������

�G�
�
"1.

(C.4)

We can easily apply the conjugate gradient algorithm to minimize our criterion, in the two cases given in
Eqs. (C.2) and (C.4). In addition, constraints (C.2) and (C.4) can be satis"ed easily by a simple Cholesky
decomposition.��
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