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Abstract

In this paper we present a new blind separation of

sources (BSS) algorithm based on second order statis-

tics (SOS) and geometrical approaches. The new algo-

rithm can separate multisources from their instanta-

neous mixtures obtained by multisensors. In the case

of p sources and p sensors, the algorithm can be de-

composed into p steps: First, one should transform

the mixing signals to orthogonal signals using mainly

the SOS of the mixing signals. After that, one can

separate the sources by using p� 1 rotations and pro-

jections. The experimental studies show that the sep-

aration of two or three speech or music signals can be

obtained in relatively competitive time and that the

obtained results are very satisfactory.
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1 Introduction

The blind separation of sources (BSS) has been an im-

portant problem in signal processing �eld since it can

be found in many di�erent applications [1]: speech

enhancement [2], separation of seismic signals [3],

sources separation method applied to nuclear reactor

monitoring [4], airport surveillance [5], noise removal

from biomedical signals [6], multi-tag radio-frequency

identi�cation systems [7], robotic and arti�cial life [8].
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Figure 1: Separation Model

According to that problem [9], one should retrieve

the p unknown and independent sources X(t) from the

observation of their mixture Y (t) using p sensors, see
Fig. 1. In many cases, the channel e�ect can be con-

sidered as memoryless channel (i.e., the mixture of the

sources can be considered as instantaneous mixture),

or:

Y (t) =MX(t); (1)

where M is a p � p full rank matrix represents the

channel e�ect. For instantaneous mixtures, many al-

gorithms and criteria were proposed [10, 11, 12, 13,

14, 15, 16, 17]. Most of the proposed algorithms are

based on or used High Order Statistics (HOS). Mean-

while, some researchers proposed a simple algorithm

for blind separation of binary or n-valued signals us-

ing geometrical concepts [18, 19]. Their algorithm is

very simple and it can converge in very competitive

time. On the other hand, that version of the algo-
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rithm cannot be easily generalized for more than 2

sources and to separate real signals such as speech or

music signals as well as signals with Gamma or simi-

lar PDF. To separate speech signals, another geomet-

rical algorithm was proposed [20]. Unfortunately, the

new algorithm can not separate signals with uniform

or similar PDF (as sinusoidal signals). The geomet-

rical algorithms generally are based on the fact that

the scatter plot of two independent signals (i.e. x2(n)
against x1(n) for every n) is a rectangular which its

edges are parallel to the reference axes.

In this paper, we propose a new geometrical al-

gorithm to separate two or more zero-mean sources

which can be either uniform PDF or speech signals.

unfortunately, the actual version can not separate the

mixing of signals which belong to the two categories

(the algorithm can be modi�ed to deal with such

cases).

2 New Algorithm

From geometrical point of view, equation (1) can be

considered as geometrical transformation that change

the rectangular (in the case of two signals) scatter plot

of the sources into a parallelogram (i.e., the scatter

plot of the observation of the mixing signals). Here,

we show how one can separate p sources from their in-

stantaneous mixture by using an algorithm of p steps:
First of all, one can transform the scatter plot of the

observation signals from an hyper-parallelepiped into

an hyper-cube scatter plot of some orthogonal signals

in the p dimensional space. The orthogonal signals

Z(t) can be easily obtained from Y (t) as:

Z(t) = KY (t); (2)

here, K = L
�1 and L is the Cholesky factoriza-

tion of the observation covariance matrix, i.e. RY =

EY Y T = LLT [21] and E(X) denotes the statistical

mean of X.

After the orthogonalization of the signals, the sep-

arated signals S(t) can be obtained as the multiplica-

tion of the orthogonal signals Z(t) by a rotation ma-

trix R(�). The latter matrix R(�) should rotate the

scatter plot GZ of the orthogonal signals such that

the edges of the rotated scatter plot GS are parallel

to the references axes. In the following, we explain

how R(�) can be obtained as the product of p�1 sim-

ple rotation matrix. But one should distinguish two

cases: uniform or similar PDF, and Speech or Gamma

PDF signals.
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Figure 2: Separation Algorithm for Uniform PDF

2.1 Uniform PDF

In this section we assume that the sources have uni-

form or similar PDF. The scatter plot of such signals

can be represented by Fig. 2.

Let O be the center of the reference axes. It is clear

that the farthest point A from the origin is actually

one of the vertices of the hyper-cube GZ (GZ is the

scatter plot of Z(t)). It is known that the separation

of sources can be achieved [13, 1] up to a permutation

and a factor, i.e., the global matrix G can be consid-

ered as:

G =WM = P�; (3)

where P is any permutation matrix, � is any full-

rank diagonal matrix, andW denotes the separating

matrix, in our case W = KR(�). From equation (3),

one can consider, without loss of generality, that the

estimated sources S(t) are bounded signals with the

same boundary. In other words, one vertices of GZ

should belongs to a p � 1 hyper-surface D1 de�ned

by its parametric equation x1 = x2 = � � � = xp, xi
is the coordinate of any point the p space. Therefore

by using a rotation matrix R1, one should rotate the

hyper-cube GZ such that the vertex A should belong

to D1, the rotated hyper-cube is denoted by G1. In

the case of three sources, D1 becomes a straight line

which should be colinear to a principal diagonal of the

cube GS . In this case, the necessary rotation matrix

R1 is given by:
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Figure 3: Separation Algorithm for Speech signals

R1 =

0
@ cos(�) � sin(�) 0

sin(�) cos(�) 0

0 0 1

1
A �

0
@ cos(' � b) 0 sin('� b)

0 1 0

� sin('� b) 0 cos(' � b)

1
A �

0
@ cos(a) sin(a) 0

� sin(a) cos(a) 0

0 0 1

1
A (4)
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x
+A2

y
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).

using p � 1 constraints, one can �nd another ver-

tex B of rotated hyper-cube G1. now we should ro-

tate G1 around OA such that hyper-straight line AB
becomes parallel to one reference axe, say ~ox. We

should continue rotating the hyper-cube around di�er-

ent axes and using di�erent vertices to �nally obtained

an hyper-cube Gs such that its edges are parallel to

the references axes. When p = 3, B is a point of the

cube G1 such that j ~OBj = j ~OAj = 2p
3
j ~ABj (the in-

determinacy over B is coming from the permutation

indeterminacy, see equation (3)). The separated sig-

nals can be obtained after the rotation of G1 around

OA such that AB becomes parallel to ox. We can

prove that such rotation is given by:
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Figure 4: The separation of mixing of a uniform signal

with a sinusoidal signal
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here  is the rotation angle, which its cosine and sine

can be obtained by:

�
cos( )
sin( )

�
= (FTF)�1FTW (5)

here
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0
@ 2xB � yB � zB
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3yA � xB � yB � zB
3zA � xB � yB � zB

1
A and F = (U V ):

2.2 Speech Signals

For independent signals with Gamma or similar PDF

and real signals such as speech or musical signals, the

scatter plots can not be in hyper-cube form, instead of

that it will be more like a star (a cross for two signals)

which the symmetrical axes are colinear to the refer-

ence axes. Instead of the vertices of the hyper-cube,

one should consider the radiating points of the star.

The algorithm can be applied by considering the par-

ticularity of this case, (one should change the rotation

angles, the constraints to determined the di�erent ra-

diating points).
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Figure 5: The separation of two speech signals: The voice of man and music signal

For three signals, one can use the rotation matrix

R1 with ' = � = 0. Now B is the farthest point

from the origin in the plan Oxy. Finally the separa-

tion is obtained after the rotation of the scatter plot

G1 around the vertical axe ~oZ such that ~oB becomes

colinear to the horizontal axe ~ox using the following

Givens matrix:

R(�) =

0
@ cos(�) sin(�) 0

� sin(�) cos(�) 0

0 071

1
A (6)

here � = (1� Sign(XB))
�
2
+arctan( YB

XB

), XB and YB
are the coordinate of B.

3 Experimental Results

Many experiments have been conducted and good re-

sults have been obtained. The experimental study

shows that with less than 6000 samples the algorithm

can separate successfully the mixing of two speech,

musical or Gamma PDF signals. Just few hundred

of samples are enough to separate two signals with

uniform or similar PDF. Unfortunately, it needs more

than 10000 samples to separate the mixing of three

signals with uniform or similar PDF and more than

20000 samples (around 30000) to separate successfully

the mixing of three speech, musical or Gamma PDF

signals.

Fig. 4 shows the scatter plots of the di�erent sig-

nals. Fig. 5 shows the experimental results obtained

from the separation of two speech signals. Finally, the

separation of three speech or music signals is shown

in Fig. 6.

4 Conclusion

In this paper, a new geometrical algorithm for blind

separation of sources problem is presented.

The new algorithm is based on second order statis-

tics and geometrical concepts (as rotations, projec-

tions into hyper-surfaces or volumes). The algorithm

can be derived very simply in the case of three or two

signals.The experimental results obtained in the case

of two or three signals are very encouraging.

Unfortunately, the number of samples increases

very fast is the number of sources increases: in the

case of speech and musical signals, 6000 samples are

enough to separate two signals. However, more than

20000 samples are required to separate three musical

signals.

Finally, the new algorithm is not a time consuming

algorithm (few second are enough to separate three

speech signals using high level of computer language,

as Mathematica or Matlab) and it does not require

high computational e�orts.
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