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ABSTRACT 

 
This work explains a new method for blind separation of 
a linear mixture of sources, based on geometrical 
considerations concerning the observation space. This 
new method is applied to a mixture of several sources 
and it obtains the estimated coefficients of the unknown 
mixture matrix A and separates the unknown sources. 
The principles of the new method and a description of the 
algorithm followed by some speed enhancements are 
shown.  Finally, we illustrate with simulations of several 
source distributions how the algorithm performs. 
 

 
1.   INTRODUCTION 

 
The separation of independent source signals from mixed 
observed data is a fundamental and challenging signal 
processing problem. In many practical situations, one or 
more desired signals need to be recovered blindly 
knowing only the observed sensor signals. When p 
different source signals propagating through a real 
medium have to be captured by sensors, these sensors are 
sensitive to all sources )(tsi  and thus the signal )(txk , 
observed at the output of sensor k, is a mixture of source 
signals. With a linear and stationary mixing medium the 
sensor signals can be described by: 
 

( ) ( )x t As t=  (1)
where 1( ) ( ( ), ..., ( ))T

nx t x t x t=  is an experimentally 
observable ( 1)n× -sensor signal vector s(t), with  

1( ) ( ( ), ..., ( ))T
ps t s t s t=  is a ( 1)p× - unknown source 

signal vector having stochastic independent and zero-
mean non-Gaussian elements )(tsi , and A is a )( pn×  
unknown full-rank and non-singular mixing matrix. The 
solution of the blind signal separation (BSS) problem 
consists of retrieving the unknown sources )(tsi  from 
just the observations. To achieve this it is necessary to 
apply the hypotheses that the sources ( )is t  and the 
mixture matrix 1( ,..., )T

nA a a= are unknown, that the 

number n of sensors is at least equal to the number p of 
sources, i.e. n p≥ , and that the components of the 
source vector are statistically independent yielding: 
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 In order to solve the BSS - problem a separating matrix  
W is computed whose output is an estimate of the 
vector )(ts  of the source signals (Figure 1) such that: 
 

( ) ( )y t W x t=  (3)
  
Any BSS algorithm can only obtain W  subject to:      

1W A DP− =  (4)
 
with a diagonal scaling matrix D modified by a 
permutation matrix P. Recently, blind source separation 
(BSS) and Independent Component Analysis (ICA) have 
received much attention because of its potential 
applications in signal processing. A great diversity of 
estimation methods have been proposed based on some 
kind of statistical analysis, neural networks [7], the 
entropy concept [3], the geometric structure of the signal 
spaces [1,6,9], the fixed-point algorithm FastICA [5], the 
maximum likelihood stochastic gradient algorithm [2], 
the Jade algorithm [4], among others. Several geometric 
procedures have been used to separate either multivalued 
or analog signals, by analyzing the observed sensor 
signals in the resulting p-dim space of observations. In 
the following we will present a new geometric ICA 
algorithm which is based on rough density estimation.  
 
 

2.   PRINCIPLES OF THE NEW METHOD 
 
For p = 2 and with bounded values (uniform 
distribution), the observed signals 1 2( ( ), ( ))x t x t  form a 
parallelogram in the 1 2( , )x x  space, as shown in Figure 1. 
We have demonstrated [8] that, through a matrix 
transformation, the coefficients of the matrix coincide 



with the slopes of the parallelogram. It can be seen that 
for random uniform sources, the parallelogram 
representing the space of observations 1 2( , )x x  is 
geometrically bounded within the segments between the 
points 1P  to 4P . The slopes of these segments give the 
coefficients of the estimated mixture matrix 1W − . In 
order to obtain these segments, it is necessary to estimate 
the coordinates of those points Pi., i=1…4  Assuming non-
uniformly distributed signal as the sources, for example 
speech signals with an underlying super-Gaussian 
distribution; the form of the sensor signal distribution in 
the space of observations is highly non-uniform too, as 
can be seen in Figure 3. In this case it is not sufficient to 
estimate the borders of the bounded space of 
observations. Rather, it is necessary to detect the 
directions of high density in the space of observations. 
 

 
 

Fig. 1. Space of observations: Representative points and 
straight lines. 

 
Description of the algorithm 
First of all, the algorithm computes the kurtosis of each 
component of the sensor signals and also the correlation 
coefficients between all observations. This is to detect 
whether the underlying source signal distributions 
correspond to sub- or super-Gaussian distributions. 
According to the Central Limit Theorem, mixtures will 
tend to be closer to Gaussian than the original ones. 
Consequently, kurtoses of the mixtures will be closer to 
zero (Gaussian distribution) than the sources: 
 

{ } [ ]( ) max ( ) , 1...i jKurt x Kurt s i j n≤ ∈ (5)
 
    In any case, for mixtures of two signals, they will tend 
to preserve the sub- or super-Gaussian nature of the 
original signals, assuming that both sources have the 
same sign in the kurtosis. If the kurtoses of all sensor 
components are positive, the algorithm searches for high 
density regions of the sensor signal distribution. With 
sub-Gaussian signals, the algorithm estimates the 
bounding box of the parallelogram representing the space 
of observations. The algorithm subdivides the space of 
observations 1 2( , )x x  into a regular lattice of cells with 
N-rows and M- columns (lattice of N by M) as shown in 

Figure 2. Then, the algorithm computes the number of 
cells in the lattice in which the number of points inside it 
is greater than a given threshold TH. 
    The distribution of sensor signals within each of these 
cells then is replaced by a prototype sensor signal vector. 
The prototype vector mostly does not point towards the 
centre of the cell because its position is weighted by the 
density of points ),( 21 ii xx  in this cell. This step greatly 
reduces the complexity of the algorithm, because the 
greatest number of points that the procedure needs to 
compute is N M× . To further reduce the number of 
points, the next step of the algorithm finds those points 
which either form the border of the hyperparallelepiped 
or mark the high density regions of the sensor signal 
distribution in the space, by looking for cells that have an 
empty neighborhood (such cells have fewer points than 
the threshold TH). Then these cells without a complete 
neighborhood form the border of the distribution 
encompassing NR data points in the space of 
observations. The algorithm then computes the 
coordinates of 1 11 12( , )P p p= and 2 21 22( , )P p p= . The 
space of observations has been reduced to NR data points 
which, in two dimensions, represent pairs of coordinates 

),( 21 ii xx . In this reduced set of NR data points, there 
exist data points P1 and P2 with largest Euclidean 
distance between them in the space of observations :  
 

1 2 , (1,2,.... )( , ) max ( , )i j NR i jd P P d P P∈=  (6)
 
    Once points P1 and P2 have been identified, the 
algorithm calculates the equation of the straight line R1 
which passes through these points P1 and P2 : 
 

1 2 0Ax Bx C+ + =  (7)
 
being 

22 12 11 21

21 12 22 11

( ), ( ),

( ) ( )

A p p B p p

C p p p p

= − = −

= − − −
 (8)

 
    Next, the algorithm estimates the coordinates of the 
points 3 31 32( , )P p p=  and 4 41 42( , )P p p=  as follows: the 
straight line R1 divides the space of observations 1 2( , )x x  
into two subspaces, being R1 the border between them. 
Data points which lie within one of these subspaces yield 
a nonzero result in Eq. (7). For example, data points lying 
above the straight line R1 yield a negative result in Eq. 
(7). There is then one data point 3 31 32( , )P p p=  which 
provides the most negative value of all possible outcomes 
of Eq. (7), hence which also represents the point with the 
greatest Euclidean distance from the straight line R1 in 
the subspace above R1. In the same way, points in the 
other subspace, below the straight line R1, yield a 
positive result in Eq. (7). Again, there is one point 

4 41 42( , )P p p=  that provides the most positive value of 
all possible results from Eq. (7), and which is also the 
point with greatest Euclidean distance from the straight 



line R1 in the subspace below R1. In both cases, the 
algorithm calculates the Euclidean distance ( )ir P  from a 
generic point 1 2( , )i i iP p p=  to the straight line R1. 
 

 
Fig. 2. Lattice of the space of observations and straight 

lines which define the separation matrix. 
 
    Once the characteristical points of the parallelogram 
have been obtained, the algorithm computes either the 
slopes of the segments (

_____

1 3P P  and 
_____

1 4PP  or, equivalently _____

2 4P P  and 
_____

3 2P P ) in case of sub-Gaussian densities or the 
slopes of the diagonals (

_____

1 2PP  and 
_____

3 4P P ) in case of super-
Gaussian densities in order to obtain the coefficients of 
the matrix W as in Eq. (9)  (see Figure 2): 
 

1

32 1212 21 42 12

22 31 11 11 41 11

;p pa a p p
a p p a p p

−
   − −

= =   − −   
(9)

    Using the coefficients of matrix W, the algorithm 
computes the inverse matrix W-1 and reconstructs the 
unknown source signals )(ts  (see Eq. (3)). 
 
Further enhancements 
The computational order of the algorithm is polynomial: 
 

 
2( )Comput Order DataPoints XColumns YRows− = ⋅ ⋅ (10)

 
     As a further improvement, we propose the reduction 
of the number of points at the beginning of the algorithm 
with a random elimination through all the space of the 
joint distribution of the mixtures as long as enough data 
points are kept to correctly estimate the sources. A more 
elaborated proposal is eliminating those points of the 
joint distribution of the mixtures which lay within a 
calculated radius near the center of the joint distribution, 
because they are useless for the algorithm, due to its 
nature of computing contours using points whose 
Euclidean  distances are the highest. From experimental 
results, we have derived equations (11) and (12) for the 
calculation of the radius based on the kurtosis and 
correlation of the mixture signals. 
     For sub-Gaussian mixtures, the algorithm will try to 
find the contour of the sensor signal distribution. In this 
case we determine the exclusion radius as follows: 

 

2( ) 0.1
R x

x
α

ρ
= ⋅

+
 (11)

 
where α is a constant (experimentally, a value of α=7.5 
was applied), ρ(x) is the correlation of the mixtures and  

 
2 2

1
(1, ) ( 2 , )

N

j
x x j x j

=

= +∑  (12)

 
     For super-Gaussian mixtures (positive kurtosis), the 
algorithm will search for high density regions of the joint 
distribution of the mixtures. Thus, the exclusion radius 
was calculated as: 
 

1.5R x= ⋅  (13)
 
     In Figure 3, the effect of applying the exclusion radius 
to a mixture of two voice signals is shown. In this case, 
79.2% lay within the exclusion radius and, therefore, they 
were removed.  
 

3. SIMULATIONS AND RESULTS 
 

The new algorithm, named as “LatticeICA”,  has been 
tested on various ensembles of artificial sensor signals 
with an arbitrary number of samples drawn at random 
from sub- and super-Gaussian distributions like uniform, 
Gamma, Laplacian and Delta distributions, as well as 
with real world speech signals.  To quantify the 
performance achieved we calculate both a crosstalking 
error of the original and recovered source signals as 
proposed by Amari et al. [2] as well as a component wise 
crosstalk defined by: 
 

where P=(pij)= W⋅A. The parameter MSE (Mean Square 
Error) measures the similarity of the signals si(t) and yi(t).  
 
Speech signals. 
In this simulation the algorithm separate two super-
Gaussian signals with a Laplacian distribution and 10000 
samples each. The lattice was automatically computed to 
be 16 rows and 16 columns, using TH= 10. The original 
and estimated matrices were:  

 
   The joint distribution of the mixtures points out the 
super-Gaussian nature of the sources (see Figure 3). The 
matrix performance index for this simulation 
was ( ) 1.2931E W A⋅ = , with Crosstalk1(Es1) = -39 dB and 
Crosstalk2 (Es2) = -24 dB. In Figure 3 it is shown how 
the algorithm searches for the lines of higher density 
instead of the contour plot. 

1 1 1 1

( ) ( 1) ( 1)
max max

n n n n
ij ij

i j j ik ik k kj

p p
E P

p p= = = =

= − + −∑ ∑ ∑ ∑  (14)

1 0.75 1 0.747
;

0.6 1 0.615 1
A W

   
= =   
   

 (15)



 

 
Fig. 3. Performance of the LatticeICA algorithm 

for a two real voice signals mixture. 
 

Comparison with other algorithms. 
In this simulation we started a more systematic 
exploration of the algorithm and compared the results to 
those obtained with two other algorithms, the FastICA 
[5] and Jade algorithms [4]. We tried random mixture 
matrixes over uniform and Laplacian mixtures of 10000 
samples, running 100 simulations each time, with 
automatic parameters. With FastICA the number of bins 
has been choosen in all cases to be 180. The NRMS 
(normalized root mean squared error) in each case and 
the corresponding average convergence times (Pentium 
IV 1.5 GHz., 512 MB RAM,  under Matlab environment) 
are summarized in Table 1. Although, both FastICA and 
Jade algorithms globally get better results than 
LatticeICA in most of the simulations, LatticeICA shows 
a great performance especially for super-Gaussian 
mixtures (speech signals) and it outperforms previous 
geometric algorithms. As a particular advantage of 
LatticeICA when compared with FastICA and Jade it 
remains its easy hardware implementation, due to the fact 
that it only computes simple arithmetic operations. Future 
enhancements in fine tuning the radius of exclusion and 
adjusting the final separation lines will certainly lead to a 
better performance. 
 

Source 
Type Procedure NRMS 

Time of 
convergence 

(ms.) 
Lattice ICA 0.054 808 
FastICA 0.021 501 Uniform 
Jade 0.028 584 
Lattice ICA 0.034 703 
FastICA 0.087 406 Laplacian 
Jade 0.009 273 

Table 1. Comparison of performance of the new 
algorithm (LatticeICA) with FastICA and Jade. 

 
Extension to higher dimensionality. 
Finally, we show how this algorithm can be extended to 
higher dimensionality situations by attempting to separate 
the projections of p mixed signals from p  onto  2 . 
The signals are shown in figures 4 to 6 (with a Laplacian 
noise, a music source and a speech signal). The original 
and obtained matrices are: 
 

1 0.5 0.5 1 0.64 0.73

0.5 1 0.5 0.45 1 0.63

0.5 0.5 1 0.46 0.47 1

A W= =
   
   
   
      

(16)

 
    In Figure 5 can be seen the 3-dimensional mixture and  
the projections in each of the planes which will be the 
inputs to the algorithm. Figure 6 depicts the separated 
signals of the proposed LatticeICA algorithm employing 
radius exclusion and random elimination of points.  
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Fig. 4. A laplacian noise, a music and a speech source 

signals. 
 
 
 

 
Fig. 5. Three-dimensional mixture and projections. 
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       Fig. 6. Estimated signals for Simulation 4. 

 
 

4. CONCLUSIONS 
 
We have developed a new geometry-based method for 
blind separation of sources which greatly reduces the 
complexity and computational load inherent in the 
standard geometric ICA algorithms. This new algorithm 
is based on a tessellation of the input space where in each 
cell a code book vector is determined to represent the 
center of gravity of the local distribution of sample 
vectors. Depending on the type of distribution, either 
sub- or super-Gaussian, the slopes of the border lines or 
the diagonals are determined to obtain the coefficients of 
the estimated mixing matrix W. The method lends itself 
for an easy hardware implementation and is also very 
intuitive in terms of computer applications. Furthermore, 
this method could be used to detect the perimeter or 
outlines in simple two-dimensional figures. In the future 
we will intend to implement this method for more than 
two signals without using projections but working in the 
p-dimensional space. 
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