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ABSTRACT

Generally, the blind separation algorithms based on the
subspace approach are very slow. In addition, they need
a considerable computation e�ort and time due to the
estimation and the minimization of huge matrices.

Previously, we proposed an adaptive subspace crite-
rion to solve the blind separation problem [1]. The cri-
terion has been minimized adaptively using a conjugate
gradient algorithm [2]. Unfortunately, the convergence

of that algorithm needed more than one hour of com-
putational time using an ultra sparc 30 and "C" code

program.

In this paper, we improve that criterion by propos-
ing a new subspace adaptive algorithm. The new algo-
rithm deals with stationary signals. The experimental

results show that the convergence of the new algorithm
is relatively fast due to the estimation by bloc of the dif-

ferent matrices and the minimization of the cost func-
tion using a generalized conjugate gradient method.

1. INTRODUCTION

Since 1985, many researchers have been interested by
the blind separation of sources problem (or the Inde-
pendent Component Analysis "ICA" problem) [3, 4, 5,

6, 7, 8, 9, 10]. According to "blind separation" problem,
one should estimate, using the output signals of an un-

known channel (i.e. the observed signals or the mixing
signals), the unknown input signals of that channel (i.e.
sources). The sources are assumed to be statistically

independent from each other.

Most of the blind separation algorithms deal with a

linear channel model: The instantaneous mixtures (i.e.
memory-less channel) and the convolutive mixtures (i.e.
the channel e�ect can be considered as a linear �lter).
The criteria of those algorithms were generally based
on high order statistics [11, 12, 13, 14, 15].

Recently, by using only second order statistics,
some subspace methods have been explored to separate
blindly the sources in the case of convolutive mixtures
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[16, 17, 18, 19].

In this paper, we propose a new subspace algorithm
which improves the performance of our previous crite-
rion [1]. This new algorithm can be decomposed into
two steps: First step, by using only second-order statis-
tics, we reduce the convolutive mixture problem to an
instantaneous mixture (deconvolution step); then in the

second step, we must only separate sources consisting of
a simple instantaneous mixture (typically, most of the

instantaneous mixture algorithms are based on fourth-
order statistics).

2. MODEL & ASSUMPTIONS

Let Y (n) denotes the q�1 mixing vector obtained from

p unknown sources S(n) and let the q � p polynomial
matrix H(z) = (hij(z)) denotes the channel e�ect (see
�g. 1).

Generally, the authors assume that the sources are

statistically independent from each other and that the
�lters hij(z) are causal and �nite impulse response
(FIR) �lters. Let us denote by M the highest degree1

of the �lters hij(z). In this case, Y (n) can be written
as:

Y (n) =

MX
i=0

H(i)S(n� i); (1)

where S(n � i) is the p � 1 source vector at the time
(n� i) and H(i) is the real q � p matrix corresponding
to the �lter matrix H(z) at time i. Let YN (n) (resp.
SM+N (n)) denotes the q(N + 1) � 1 (resp. (M +N +

1)p� 1) vector given by:

YN (n) =

0
@

Y (n)
...

Y (n�N)

1
A ; (2)

SM+N (n) =

0
@

S(n)
...

S(n�M �N)

1
A : (3)

By using N > q observations of the mixture vector, we
can formulate the model (1) in another form:

YN (n) = TN (H)SM+N(n); (4)

1M is called the degree of the �lter matrix H(z).
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Figure 1: General structure.

where TN(H) is the Sylvester matrix corresponding to
H(z). The q(N + 1)� p(M +N + 1) matrix TN (H) is

given by [20] as:2
664
H(0) H(1) : : : H(M) 0 : : : 0
0 H(0) : : : H(M � 1) H(M) 0 : : :
...

...
. . .

. . .
. ..

. . .
...

0 : : : 0 H(0) H(1) : : : H(M)

3
775 :

According to [?], if H(z) is a full rank2 and a column-
reduced matrix (for the de�nition of column-reduced
matrix see [20]), the Sylvester matrix can identify H(z)

up to a scalar polynomial �lter.

From equation (4), one can conclude that the sep-
aration of the sources can be achieved by estimating a
(M +N + 1)p � q(N + 1) left inverse matrix G of the
Sylvester matrix, which exists if the matrix TN (H) has

a full rank. In another hand, it was proved in [21] that
the rank of TN (H) is given by:

Rank TN(H) = p(N + 1) +

pX
i=1

Mi: (5)

where Mi is the degree of the ith column3 of H(z). It
is easy to prove using (5) that the Sylvester matrix has
a full rank and it is left invertible if each column of

the polynomial matrix H(z) has the same degree and
N > Mp.

3. CRITERION & ALGORITHM

In a previous paper [1], we present a sub-space algo-
rithm to solve the problem of blind separation of sources
for convolutive mixtures. That algorithm was based on
the minimization, using the conjugate gradient algo-

rithm, of a subspace criterion which has been based on
second-order statistics:

min
G

G

n1X
n=n0

Y(n)YT (n)GT : (6)

where G = (GT
1 ; : : : ;G

T
(M+N+1))

T is the estimated

left inverse of TN (H), Gi is the ith p � q(N + 1)

2To satisfy those constraints, one must assume that the num-
ber of sensors is great than the number of sources q > p.

3The degree of a column is de�ned as the highest degree of
the �lters in this column.

bloc row of G and G = (G1;G2; : : : ;G(M+N+1)) is
a p� q(N + 1)(M +N + 1) matrix. It has been also

shown, in that previous paper [1], that the minimization
of the cost function (6) does not give the Moore-Penrose
generalized inverse (pseudoinverse) of the Sylvester ma-
trix TN(H), but a (M +N + 1)p� q(N + 1) matrix G
which satis�es that GTN(H) is a block diagonal ma-
trix:

GTN(H) =

0
BB@

A 0 : : : : : : 0
0 A 0 : : : 0

0
. . .

. . .
. . . 0

0 0 : : : 0 A

1
CCA ; (7)

where A is an arbitrary p � p matrix. It is clear
that as the algorithm converges, the estimated sources

are instantaneous mixtures (according to a matrix A)
of actual sources: in fact using (4) and (7), we �nd that:

GYN (n) =

0
@

AS(n)
...

AS(n �M �N)

1
A : (8)

To avoid the spurious solution G = 0 and force the

matrix A to be an invertible matrix4, it was proposed
that the minimization should done subject to the con-
straint:

G1RY (n)G
T
1 = Ip; (9)

where RY (n) = EYN (n)YN (n)
T is the covariance ma-

trix of YN (n) and Ip is a (p�p) identity matrix. Even if

the convergence of that algorithm was attained in small
number of iterations (in general case, less than 1000
iterations was needed), but the convergence time is rel-

atively important due to the adaptive minimization of
large size matrices.

In this paper, to increase the performance of that
criterion in the case of stationary signals, we suggest

the following modi�cation of the cost function:

min
G

GAG
T
; (10)

where A = EY(n)YT (n) is a q(N + 1)(M + N +
1) � q(N + 1)(M + N + 1). One can remark that A

4So the separation of the residual instantaneous mixture be-
comes possible using any algorithm for the separation of instan-
taneous mixture.
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can be evaluated with respect to the covariance matrix5

RY = RY (n) and it is equal to :

2
6666664

RY 1 �RY 0 0 : : : 0 0

�R
T
Y 1 2RY �RY 1 0 : : : 0 0

0 �R
T
Y 1 2RY �RY 1 0 : : : 0

... 0 � � � � � � � � � 0 : : :

0 0 : : : 0 �R
T
Y 1 2RY �RY 1

0 0 : : : : : : 0 �R
T
Y 1 RY

3
7777775

where RY 1 = EYN (n)Y
T
N (n + 1). Let B denotes the

q(N + 1)(M +N + 1)� q(N + 1)(M +N + 1) matrix:

B =

�
RY 0
0 0

�
(11)

Experimentally, RY and RY 1 are estimated, at the

beginning of the algorithm, according to the estimation
algorithm of [22].

To increase the performances and the convergence
speed of the algorithm, the cost function (10) is mini-
mized using a generalized conjugate gradient algorithm,
proposed by Chen et al. in [23]. That algorithm

minimizes the generalized version of Rayleigh's ratio:
f(V ) = V HAV=(V HBV ) with respect to a vector (V )
(from theoretical point of view, this algorithm can con-
verge in a number of iterations which is less than the

dimension of V ).

In our case, the cost function (6) must be minimized
with respect to a p � q(N + 1)(M +N + 1) matrix G.
So, let us denote by Gi the ith row of G, one can verify

that the cost function (10) and the constraint (9) can
be reevaluated6 as:

�
minG1 G1AG

T
1

Subject toG1BG
T
1 = 1

and�
minG1 G2A2G

T
2

Subject to G2BG
T
2 = 1

with A2 = A+BGT1 G1B. Finally, the source sepa-
ration of the instantaneous residual mixture is achieved
according to the method proposed in [24].

4. EXPERIMENTAL RESULTS

The experimental study shows that for two stationary
sources, the convergence of the subspace criterion (10)
is attained with less than 300 iterations (see �gure 2).
The performances are similar to the performances of our
previous algorithm [1] but the convergence is obtained
in few minutes due to the minimization of the new cost
function and the estimation of A and B (as described

in the previous section).

5For stationary signals, the covariance matrix RY (n) is in-
dependent of time.

6With out less of generality, we will consider just the case of
p = 2. Anyway, the case p > 2 can be easily deduced.
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Figure 2: The convergence of the sub-space criterion
with respect to the iteration number.

In that experiment, four sensors q = 4 and two sta-
tionary sources p = 2 with an uniform probability den-
sity function (pdf) were used. The channel e�ect H(z)
is considered as a FIR �lter of fourth degree (M = 4).

We can see in �gure 3 that the objective of �rst step
of the algorithm was achieved, with G:TN (H) being a

block diagonal matrix (where A is a 2 � 2 matrix, see
(7)).
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Figure 3: Performance results: G:TN (H) should be a
block diagonal matrix.

Finally, to demonstrate the behavior of our algo-
rithm and its performances, we plot the di�erent signals
in their own space, as in �gure 4.

In �gure 4, we remark that the sources s1(n) and
s2(n) are statistically independent and so are the esti-
mated signals x1(n) and x2(n) (for more information
concerning the relationship between the distribution

of signals and their statistical relationships with each
other, see [25]). In addition, from �gure 4 (c) we can
say that these signals may be obtained by mixing inde-
pendent signals with help of an instantaneous mixtures.

Finally, we can see the mixing signals, y1(n) and y2(n),
in the �gure 4 (b).
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Figure 4: Experimental results.

5. CONCLUSION

In this paper, we present a blind separation of sta-

tionary sources algorithm for convolutive mixtures and
based on subspace approach.

This algorithm can be decomposed into two parts:
The deconvolution part, using only second order statis-
tics and subspace criterion, and the instantaneous sep-
aration of the instantaneous residual mixture using

fourth order statistics.

The minimization of the subspace criterion was done
using the generalized conjugate gradient algorithm. By
consequence, we �nd that most of the channel parame-

ters can be estimated using only second-order statistics.

The experimental results show that the separation

was achieved in few hundred iterations (generally, less
than 500 iterations was needed to achieve the subspace
deconvolution part). The actual version of the algo-

rithm is relatively fast and we succeeded in separating

two stationary sources, with about -20 dB of residual
cross-talk. Currently, we are trying to separate non-
stationary sources (for example: speech signals).
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