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Abstract

In this paper, it is shown that independent component analysis (ICA) of sparse signals (sparse ICA) can be seen as a cluster-wise

principal component analysis (PCA). Consequently, Sparse ICA may be done by a combination of a clustering algorithm and PCA. For

the clustering part, we use, in this paper, an algorithm inspired from K-means. The final algorithm is easy to implement for any number

of sources. Experimental results points out the good performance of the method, whose the main restriction is to request an exponential

growing of the sample number as the number of sources increases.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Blind Source Separation (BSS) consists in retrieving
unknown statistically independent signals from their
mixtures, assuming there is no information either about
the original source signals, or about the mixing system
(hence the term Blind). Let sðtÞ9ðs1ðtÞ; . . . ; sN ðtÞÞ

T be the
vector of unknown source signals (assumed to be zero-
mean and statistically independent), and xðtÞ9ðx1ðtÞ; . . . ;
xN ðtÞÞ

T be the vector of observed signals (in this paper, the
number of observations and sources are assumed to be
equal). Then, for linear instantaneous mixtures xðtÞ ¼

AsðtÞ, where A is the N �N (unknown) ‘mixing matrix’.
The problem is then to estimate the source vector sðtÞ only
by knowing the observation vector xðtÞ.

Since the only information about the source signals is
their statistical independence, an idea for retrieving them is
to find a ‘separating matrix’ B that transforms again the
observations into independent signals. In other words, B is
calculated in such a way that the output vector y9Bx has
e front matter r 2006 Elsevier B.V. All rights reserved.
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independent components. This approach, which is usually
called Independent Component Analysis (ICA), has been
shown [2] to retrieve the source signals up to a scale and a
permutation indeterminacy (i.e. the energies of the sources
and their order cannot be restored).
On the other hand, Principal Component Analysis

(PCA) is a technique to transform a random vector to
another random vector with decorrelated components. Let
Rx9EfxxTg be the correlation matrix of the zero-mean
random vector x. Moreover, let li; i ¼ 1; . . . ;N be the
eigenvalues of Rx corresponding to (orthonormal) eigen-
vectors ei; i ¼ 1; . . . ;N. Now, if

B ¼ ET, (1)

where E9½e1; . . . ; eN �, then it can be easily verified that the
covariance matrix of y ¼ Bx is diagonal. More precisely,
Ry ¼ K, where Ry is the correlation matrix of y and
K9diagðl1; . . . ; lN Þ. In other words, the components of y
(called the principal components of x) are decorrelated,
and their variances are li; i ¼ 1; . . . ;N. Fig. 1 shows the
plot of the samples of a random vector x and its principal
components.
It is well known that for BSS (or ICA) output

independence cannot be simplified as output decorrelation
(PCA) [1]. Consequently, PCA cannot be used for solving
the ICA problem. However, the goal of this paper is to

www.elsevier.com/locate/neucom
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Fig. 1. Principal Components of a set of (two-dimensional) points.

2The algorithm becomes very tricky.
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show that for sparse signals, ICA can be achieved by a
cluster-wise PCA.

To state the idea more precisely, note first that from (1),
each row of B in PCA is composed of the direction of one
of the principal components. We are going to show in this
paper that for sparse signals, the ICA matrix can be
obtained by a clustering of observation samples, and then
by taking the direction of the smallest principal component
(i.e. the principal component with the smallest variance) of
each cluster as the rows of B. Developing a clustering
algorithm inspired from K-means, we will also obtain an
ICA algorithm for sparse signals.

To obtain the above result, we start with the geometrical
ICA algorithm [7], and then modify and extend it to sparse
signals. Although the development of our approach is
started form geometrical interpretations, the final algo-
rithm (see Fig. 7) is completely algebraic. Moreover,
contrary to geometrical ICA algorithm, our result and
approach are easy to extend for more than two sources.

The paper is organized as follows. Section 2 reviews the
geometrical source separation algorithm, and its modifica-
tion for using it in separating sparse signals. Then, we will
see, in Section 3, how hyper-plane fitting can be used for
sparse ICA. After reviewing, in Section 4, the Principal
Component Regression (PCR) method for hyper-plane
fitting, an approach for fitting N hyper-planes onto a set of
data points is proposed in Section 5. Putting all together,
the final algorithm is presented in Section 6. Finally, some
experimental results are given in Section 7.

2. Geometrical source separation algorithm

2.1. Classical geometric algorithm

The geometrical interpretation of ICA, which results in
the geometrical source separation algorithm, has been first
introduced in [7]. In this approach (for two-dimensional
case), using source independence i.e. ps1;s2ðs1; s2Þ ¼
ps1
ðs1Þps2

ðs2Þ, where p stands for the probability density
function (PDF), one easily sees that, for bounded sources
in which there exist A1 and A2 such that ps1

ðs1Þ ¼ 0 for
js1j4A1 and ps2

ðs2Þ ¼ 0 for js2j4A2, the support of
ps1;s2 ðs1; s2Þ is the rectangular region fðs1; s2Þjjs1jpA1;
js2jpA2g. Therefore, for bounded sources, the points
ðs1; s2Þ will be distributed in a rectangular region
(Fig. 2a). On the other hand, having in mind the scale
indeterminacy, the mixing matrix can be assumed to be of
the form (i.e. normalized with respect to diagonal ele-
ments):

A ¼
1 a

b 1

� �
. (2)

Then, under the transformation x ¼ As, the rectangular
region of the s-plane (Fig. 2a) will be transformed into a
parallelogram (Fig. 2b). It is easy to verify that the slopes
of the borders of this parallelogram are 1=a and b.
Consequently, for estimating the mixing matrix, it is
sufficient to plot the observation points ðx1;x2Þ, which will
produce a parallelogram, and then to estimate the slopes of
the borders of this parallelogram, which determine a and b

and hence the mixing matrix.

2.2. Geometric algorithm for sparse sources

Although the approach of the previous section constitu-
tes a very simple BSS algorithm and provides us a
geometrical interpretation of ICA, it has two restrictions:
(1) it cannot be easily2 generalized to separate more than
two sources, and (2) it is suitable only for separating
sources that allow a good estimation of the borders of the
parallelogram (e.g. uniform and sinusoidal sources).
Indeed, this approach cannot be directly used for separat-
ing sparse (like speech and ECG) signals. This is because
the PDF of a sparse signal is mostly concentrated about
zero, and hence the support of ps1s2

ðs1; s2Þ is not well filled
by the source samples ðs1; s2Þ (see Fig. 3 for the case of two
speech signals). In other words, for sparse signals, it is
practically impossible to find a point on the border of the
parallelogram (which would require that both sources have
simultaneously high amplitude).
Although for sparse signals the borders of the parallelo-

gram are not visible in Fig. 3, there are two visible ‘‘axes’’,
corresponding to lines s1 ¼ 0 and s2 ¼ 0 in the s-plane
(throughout the paper, it is assumed that the sources and
hence the observations have zero-means). The slopes of
these axes, too, determine 1=a and b in (2). In other words,
for sparse signals, instead of finding the borders, we try to
find these axes. This idea is used in [6] for separating speech
signals by utilizing an ‘‘angular’’ histogram for estimating
these axes. In their method, the resolution of the histogram
cannot be too fine, since it would require too many data
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Fig. 2. Distribution of (a) source samples, and (b) observation samples.
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Fig. 3. Distribution of (a) two speech samples, and (b) their mixtures.
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points, and conversely cannot be too coarse, since it would
provide a too bad estimation of the mixing matrix.
Moreover, their approach cannot be easily generalized to
mixtures of more than two source signals.

However, we start here with another idea for finding
these axes: ‘fitting two straight lines’ onto the scatter plot
of observations. We will see, in the following sections, that
this idea can be easily generalized to more than two
sources. Moreover, we will see that this fitting can be done
by a cluster-wise PCA, which means that, sparse ICA can
be done by a cluster-wise PCA.

3. Sparse ICA by line fitting

3.1. Two-dimensional case

As it is explained in the previous section, our main idea is
to estimate the slopes of two axes of the scatter plot of
observations (Fig. 3b). These axes correspond to the lines
s1 ¼ 0 and s2 ¼ 0 in the scatter plot of sources. The
existence of these lines is a result of the sparsity of the
source signals. For example, the points with small s1 and
different values for s2 will form the axis s1 ¼ 0.

However, we do not use (2) as a model for mixing
matrix, because it has two restrictions. Firstly, in this
model, it is implicitly assumed that the diagonal elements
of the actual mixing matrix are not zero, otherwise infinite
values for a and b may be encountered (this situation
corresponds to vertical axes in the x-plane). Secondly, this
approach is not easy to be generalized to higher dimen-
sions.
Instead of starting with mixing matrix (like model (2)),

let us consider a general ‘‘separating matrix’’ B ¼ ½bij�2�2.
Under the transformation y ¼ Bx, one of the axes must be
transformed into y1 ¼ 0, and the other into y2 ¼ 0. In other
words, for every ðx1;x2Þ on the first axis:

0

y2

 !
¼

b11 b12

b21 b22

 !
x1

x2

 !
) b11x1 þ b12x2 ¼ 0. (3)

The above relation shows that the equation of the first axis
in the x-plane is b11x1 þ b12x2 ¼ 0. In a similar manner, the
second axis will be b21x1 þ b22x2 ¼ 0. Consequently, for
estimating the separating matrix, the equations of the two
axes must be found in the form of a1x1 þ a2x2 ¼ 0, and
then each row of the separating matrix is composed of the
coefficients of one of the axes.
It is seen that by this approach, we are not restricted to

non-vertical axes (non-zero diagonal elements of the
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Fig. 4. (a) Least squares line fitting, (b) Orthogonal line fitting.

M. Babaie-Zadeh et al. / Neurocomputing 69 (2006) 1458–1466 1461
mixing matrix). Moreover, this approach can be directly
used in higher dimensions, as stated below.

3.2. Higher dimensions

The approach stated above can be directly generalized to
higher dimensions. For example, in the case of 3 sparse
sources, the small values of s1 with different values of s2
and s3 will form the plane s1 ¼ 0 in the three-dimensional
scatter plot of sources. Hence, in this three-dimensional
scatter plot, there are 3 visible planes: s1 ¼ 0, s2 ¼ 0 and
s3 ¼ 0. These planes will be transformed into three main
planes in the scatter plot of observations. With calculations
similar to (3), it is seen that each row of the separating
matrix is composed of the coefficients of one of these main
planes of the form a1x1 þ a2x2 þ a3x3 ¼ 0.

Consequently, for separating the mixtures of N sparse
signals from N observed signals, N (hyper-)planes of the
form a1x1 þ � � � þ aNxN ¼ 0 must be first ‘‘fitted’’ onto the
scatter plot of observations. Then, each row of the
separating matrix is the coefficients ða1; . . . ; aN Þ of one of
these (hyper-)planes.

4. Fitting a straight line (a hyper-plane) onto a set of points

To use the idea of the previous section in separating two
(N) sparse sources, we need a method for fitting two lines
(N hyper-planes) onto the scatter plot of observations. In
this section, we consider the problem of fitting one line (one
hyper-plane) onto a set of points. Then, in the following
section, a method for fitting two lines (N hyper-planes) will
be stated based on the method of this section for fitting one
line (one hyper-plane).

The approach presented in this section for line (hyper-
plane) fitting has old roots in mathematics [5] and is usually
called PCR [4].

4.1. Two-dimensional case (line fitting)

Consider the problem of fitting a line onto K data points
ðxi; yiÞ

T, i ¼ 1 . . .K . In the traditional least squares
method, this is done by finding the line y ¼ mxþ h which
minimizes

PK
i¼1 ðy� yiÞ

2
¼
PK

i¼1 ðmxi þ h� yiÞ
2. This is

equivalent to minimizing the ‘‘vertical’’ distances between
the line and the data points, as shown in Fig. 4a. This
technique is mainly used in linear regression analysis where
there are errors in yi’s, but not in xi’s. Similarly, one could
find the line x ¼ m0yþ h0 which minimizes

PK
i¼1 ðx� xiÞ

2
¼PK

i¼1 ðm
0yi þ h0 � xiÞ

2 and is equivalent to minimizing the
‘‘horizontal’’ distances between the line and the data
points. Of course, changing the model and the criterion
will provide different solutions.

Therefore, for fitting a line onto a set of points, a better
method consists in minimizing the sum of ‘‘orthogonal
distances’’ between the points and the line, as shown in
Fig. 4b. This approach is closer to the geometrical
interpretation of ‘line fitting’, and provides a unique
optimal solution at the least square sense.
Moreover, as discussed in the previous sections, we are

seeking a line in the form axþ by ¼ 0. Consequently, the
best fitted line is determined by minimizing

PK
i¼1 d2

i , where
di is the orthogonal distance between the ith point and the
line, that is,

di ¼
jaxi þ byijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p . (4)

It must be noted that axþ by ¼ 0 is not uniquely
determined by a pair ða; bÞ, because ðka; kbÞ represents the
same line. To get a unique solution, the coefficients are
normalized such that a2 þ b2

¼ 1. To summarize, the line

which has the best fit onto the set of points fðxi; yiÞ; i ¼
1; . . . ;Kg is the line axþ by ¼ 0 which minimizes the cost

function

Cða; bÞ ¼
XK

i¼1

ðaxi þ byiÞ
2 (5)

subject to the constraint a2 þ b2
¼ 1.

4.2. N-Dimensional case (hyper-plane fitting)

In a similar manner, consider the problem of fitting an
N-dimensional hyper-plane a1x1 þ a2x2 þ � � � þ aNxN ¼ 0
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onto a set of K data points fxi ¼ ðx
ðiÞ
1 ;x

ðiÞ
2 ; . . . ; x

ðiÞ
N Þ

T;
i ¼ 1; . . . ;Kg. The best hyper-plane is obtained by mini-
mizing

PK
i¼1 d2

i , where di is the distance between the ith
point and the hyper-plane, that is,

di ¼
ja1x

ðiÞ
1 þ a2x

ðiÞ
2 þ � � � þ aNx

ðiÞ
N jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22 þ � � � þ a2N
q . (6)

Moreover, to uniquely determine the hyper-plane, we set
a21 þ a22 þ � � � þ a2N ¼ 1. In summary, the hyper-plane which

has the best fit onto the set of points

fxi ¼ ðx
ðiÞ
1 ;x

ðiÞ
2 ; . . . ;x

ðiÞ
N Þ

T; i ¼ 1; . . . ;Kg

is the hyper-plane a1x1 þ a2x2 þ � � � þ aNxN ¼ 0 which

minimizes the cost function:

Cða1; . . . ; aN Þ ¼
XK

i¼1

ða1x
ðiÞ
1 þ � � � þ aNx

ðiÞ
N Þ

2 (7)

subject to the constraint a21 þ � � � þ a2N ¼ 1.

4.3. Solution for the N-Dimensional case

The optimum values of a1; . . . ; aN are obtained by
minimizing the cost function Cða1; . . . ; aNÞ in (7) under
the constraint gða1; . . . ; aNÞ ¼ 0, where gða1; . . . ; aNÞ9
a21 þ � � � þ a2N � 1. Using Lagrange multipliers, the solution
satisfies rC ¼ lrg. After a few algebraic calculations, this
equation is written in the matrix form:

Rxa ¼
l
K

a, (8)

where a9ða1; . . . ; aNÞ
T and Rx91=K

PK
i¼1 xix

T
i is the

correlation matrix of data points. Eq. (8) shows that l=K

and a are eigenvalue and eigenvector of the correlation
matrix Rx, respectively. Moreover,

C ¼
XK

i¼1

ðaTxiÞ
2
¼
XK

i¼1

aTxix
T
i a ¼ KaTRxa ¼ laTa ¼ l,

and hence for minimizing the cost function, l must be
minimum.

In summary, the coefficient vector a ¼ ða1; . . . ; aNÞ
T of

the hyper-plane a1x1 þ � � � þ aNxN ¼ 0 which has the best fit

onto the set of data points fxi ¼ ðx
ðiÞ
1 ;x

ðiÞ
2 ; . . . ; x

ðiÞ
N Þ

T; i ¼
1; . . . ;Kg is the eigenvector of the correlation matrix Rx

which corresponds to its minimum eigenvalue.

4.4. Relation to PCA

It is interesting to think about the conjunction of the
above approach to PCA, or more precisely Minor
Component Analysis (MCA). Note that a is the vector
perpendicular to the plane a1x1 þ � � � þ aNxN ¼ 0, and the
solution of the previous section states that the optimum
value of this vector is the direction of minimum principal

component of data points, that is, the direction of minimum
spread of data points. This is compatible with our heuristic
interpretations of plane (line) fitting (see Fig. 5 for two- or
three-dimensional case). In fact, the above approach for
line (hyper-plane) fitting is usually called Principal Com-
ponent Regression (PCR) [4].
5. Fitting 2 straight lines (N hyper-planes)

In the previous section, an approach for fitting one
hyper-plane onto a set of points was presented. However,
as stated in Section 3, for separating N sparse signals (by
having N mixtures of them), we need to fit N hyper-planes
onto observation points, not to fit just one hyper-plane.
For example, as it is seen in Fig. 3 for the two-

dimensional case, we need to fit two lines onto the scatter
plot of observations for finding the two axes. For doing
this, we can first divide the points into two clusters: the
points which are closer to the first axis, and the points
which are closer to the second axis. Then, a line will be
fitted onto the points of each cluster. Note that a point
belongs to the first cluster if it is closer to the first axis
(i.e. its distance to the first axis is smaller than its distance
to the second one). Moreover, the axis is fitted onto the
points of each cluster in such a manner that the sum of
squared distances of the points of that cluster to the axis be
minimized. Consequently, the whole process of dividing the
points into the two clusters and fitting a line onto the
points of each cluster is equivalent to minimizing the
following cost function:

C ¼
X
xi2S1

d2
ðxi; l1Þ þ

X
xi2S2

d2
ðxi; l2Þ, (9)

where Sj is the jth cluster of points and dðxi; ljÞ denotes the
perpendicular distance of the ith point from the jth line.
The minimization of the above cost function is done in
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both dividing the points into two clusters and fitting a line
onto the points of each cluster.

In a similar manner, for separating N sparse signals from
N observed mixtures of them, we need to divide the
observation samples into N clusters, and then to fit a
hyper-plane onto the points of each cluster. This is
equivalent to minimizing the following cost function:

C ¼
X
xi2S1

d2
ðxi; l1Þ þ

X
xi2S2

d2
ðxi; l2Þ

þ � � � þ
X

xi2SN

d2
ðxi; lN Þ, ð10Þ

whereSj is the jth cluster of points and dðxi; ljÞ denotes the
perpendicular distance of the ith point from the jth hyper-
plane. The minimization is done in both fitting the hyper-
plane onto the points of each cluster, and dividing the
points into the clusters.

5.1. The algorithm of fitting N hyper-planes

The problem is now how to divide the points into
clusters and fit the hyper-planes onto each cluster at the
same time. In fact, if the hyper-planes were known, the
clusters could be easily found: the ith cluster is composed
of the points which are closer to the ith hyper-plane than
any other hyper-plane. On the other hand, if the clusters
were known, it was very easy to find the hyper-planes: just
use the approach of Section 4 to fit an hyper-plane onto
each cluster of points.

However, in our problem, neither the clusters nor the
hyper-planes are known in advance. For finding them, we
propose here to iterate between these two cases. In other
words, having (e.g. randomly) divided the points into
clusters, fit a hyper-plane onto each cluster; then having the
hyper-planes, re-distribute the points into clusters by
taking the points closer to the ith hyper-plane as the ith
cluster; and go on. This idea results in the algorithm of
Fig. 6 for fitting N hyper-planes onto a set of points.

It can be seen that the algorithm of Fig. 6 is very similar
to (and in fact inspired from) k-means (or Lloyd) algorithm
for data clustering [3]. Its difference with respect to k-
Fig. 6. Algorithm of fitting two lines (N
means is that in k-means, each cluster is mapped onto a
point (point! point), but in our algorithm each cluster is
mapped onto a line or hyper-plane (point ! line). In the
following, this algorithm will be called FITLIN.
5.2. Convergence of the algorithm

One may wonder that the algorithm FITLIN converges
or not. The following theorem, which is similar to a
corresponding theorem for the k-means algorithm [3],
insures the convergence of FITLIN.

Theorem 1. The algorithm FITLIN converges in a finite

number of iterations.

Proof. At each iteration, the cost function (10) cannot be
increased. This is because in the first step (fitting hyper-
planes onto the clusters) the cost function is either
decreased or does not change. In the second step, too,
the redistribution of the points in the clusters is done such
that it decreases the cost function or does not change it.
Moreover, for a finite number of points, there is a finite
number of possible clusterings. Consequently, the algo-
rithm must converge in a finite number of iterations.

5.3. Initialization

The proof of Theorem 1 shows that at each iteration of
the algorithm FITLIN, the cost function cannot be
increased. Consequently, the algorithm may get trapped
in a local minimum. This is one of major problems of k-
means, too. It depends on the initialization of the
algorithm, and become more severe when the dimension-
ality increases.
In k-means, one approach for escaping local minima is

to run the algorithm with several randomly chosen
initializations, and then to take the result which produces
the minimum cost-function. Here, too, we use the same
idea for reducing the probability of getting trapped in a
local minimum: run the algorithm FITLIN with several
random initializations, and calculate the final cost function
hyper-planes) onto a set of points.
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(10) after convergence. Then take the answer which results
in the smallest final cost function.

6. Final sparse ICA algorithm

The final separation algorithm is now evident. First, run
the algorithm FITLIN. After convergence, there are N lines
(hyper-planes) li : ai1x1 þ � � � þ aiNxN ¼ 0, i ¼ 1 . . .N.
Then, the ith row of the separating matrix is ðai1; . . . ; aiN Þ.

Fig. 7 shows the final algorithm of this paper for blind
separating sparse sources. Note that, as explained in
Section 5.3, to reduce the probability of getting trapped
in a local minimum, this algorithm must be run with
several random initializations, and the answer which results
in minimum final cost should be taken.

7. Experimental results

Many simulations have been conducted to separate 2, 3
or 4 sparse sources. In all these simulations, typically less
than 30 iterations are needed to achieve separation. The
experimental study shows that local minima depends on
the initialization of the algorithm and on the number of
sources (in our simulations local minima have been never
encountered in separating two sources).

Here, the simulation results of 4 typical speech signals as
an example of sparse signals are presented. The sparsity of
speech signals is because of many low energy (silence and
Fig. 7. Sparse ICA algorithm b
unvoiced) sections in it. The speech signals used in our
experiments are sampled at 8KHz. In all the experiments,
the diagonal elements of the mixing matrix are 1, while all
other elements are 0.5. For each simulation, 10 random
initializations are used, and then the matrix which creates
minimum cost-function is taken as the answer.
To measure the performance of the algorithm, let C9BA

be the global mixing-separating matrix. Then, we define the
Signal to Noise Ratio by (assuming no permutation):

SNRi(in dB)910 log10
c2iiP
jai c2ij

. (11)

This criterion shows how much the global matrix C is close
to the identity matrix. For having just one performance
index, we take the mean of the SNR’s of all outputs:
SNR ¼ 1=N

P
i SNRi. To justify this, note that for

calculating the performance indices, we run the algorithm
with 50 different sources, and then for each output the
averaged output SNRs are taken over these simulations.
Consequently, the averaged SNRs (over 50 experiments)
for different outputs are not very different, and taking their
mean as the performance criterion seems reasonable.
To virtually create different source signals, each speech

signals is shifted randomly in time (more precisely, each
speech signal is shifted 128k samples, where k is a
randomly chosen integer). This results in a completely
different source scatter plot, and virtually creates a new set
of source signals. Then, for each experiment, the algorithm
ased on cluster-wise PCA.
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is run 50 times (with 50 different random shifts), and the
averaged SNR is calculated.

Fig. 8 shows this averaged SNR’s with respect to number
of samples, for separating 2, 3 and 4 speech signals. In each
simulation, in addition of applying the algorithm on the
original observations, we applied them on the Discrete
Cosine Transform (DCT) of observations, too. This is
because the DCT transform increases the sparsity of speech
signals, without affecting the mixing matrix, since the DCT
transform is linear.

Fig. 8 shows the ability of the algorithm for sepa-
rating sparse signals, and points out the interest of DCT
pre-processing which increases the signal sparsity: sparser
the signals, better the separation. This result suggests that
any linear transform improving the signal sparsity (but
preserving the mixing model, since linear) can be used
before the Sparse ICA algorithm for improving its
performance.

It is also seen in Fig. 8 that when the number of sources
increases, more data samples are required to reach a given
separation quality. This is expected, because the algorithm
is based on the sparsity of the sources and hyper-plane
fitting. For forming the hyper-plane si ¼ 0 in the s-plane, it
is required that the source sample si are near zero, while all
the other source samples have large values. Denoting
PðjSijouÞ ¼ p is the probability of a source to have a value
smaller than u, the probability of the above situation is
pð1� pÞðN�1Þ, which decreases exponentially with N. Con-
sequently, it is expected that the required number of data
5
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Fig. 8. Separation result in separating N speec
samples for achieving a predetermined separation quality
grows exponentially with N.
8. Conclusion

In this paper, we showed that sparse ICA can be seen as
a cluster-wise PCA (more precisely cluster-wise MCA), and
hence it can be done by a combination of a clustering
algorithm and PCA. Proposing a clustering algorithm
inspired from k-means, we obtained an algorithm for
sparse ICA.
Although using a clustering algorithm we proposed a

sparse ICA algorithm, it must be noted that the main point
of the paper is not the final sparse ICA algorithm, but it is
the fact that sparse ICA can be done through a cluster-wise
PCA (MCA). Consequently, one may think about other
clustering approaches for the clustering part, and obtaining
other sparse ICA algorithm. Moreover, the problem of the
current algorithm is the existence of local minima. In this
paper, this problem was treated using several random
initialization. Considering other clustering approaches, or
modifying the initialization step of the proposed algorithm
is currently under study. Finally, one shows that it is
possible to improve the algorithm performance by increas-
ing the signal sparsity: this can been done, for example, by
DCT pre-processing for speech signals (as proposed in this
paper) or by any other linear pre-processing which
preserves the mixing matrix and increases the sparsity.
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h signals, (a) N ¼ 2, (b) N ¼ 3, (c) N ¼ 4.
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