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Abstract

This paper presents a new adaptive procedure for the linear and non-linear separation of sig-
nals with non-uniform, symmetrical probability distributions, based on both simulated annealing
and competitive learning methods by means of a neural network, considering the properties of
the vectorial spaces of sources and mixtures, and using a multiple linearization in the mixture
space. The main characteristics of the method are its simplicity and the rapid convergence ex-
perimentally validated by the separation of many kinds of signals, such as speech or biomedical
data. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of linear blind separation of sources involves obtaining the signals
generated by p sources, vectorially represented by x(t) = [x1(t); : : : ; xp(t)]T, from the
linear mixture signals, e(t) = [e1(t); : : : ; ep(t)]T. The mixture, normally produced in a
medium or in the sensors, is characterized by an unknown and non-singular matrix
A(t) such that

e(t) = A(t)x(t): (1)
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If the mixture is stationary, then A(t) is constant, i.e., A(t)=A. The goal traditionally
sought within the context of separation of sources is to estimate A(t) by means of
another matrix W (t) such that the output vector s(t) is obtained as follows:

s(t) =W−1(t)e(t): (2)

The output s coincides with the original sources, x, except for a scale factor and a
permutation, i.e.,

W (t) = A(t)PD; (3)

where P is any permutation matrix and D is any full-rank diagonal matrix. Any matrix
W related to A as in (3) is said to be similar to A.
In the framework of independent component analysis, ICA, many kinds of approaches

have been presented concerning the blind separation of sources, with applications to
real problems in areas such as communications, feature extraction, pattern recognition,
data visualization, speech processing and biomedical signal analysis (EEG, MEG, fMRI,
etc.), considering the hypothesis that the medium where the sources have been mixed
is linear, convolutive or non-linear. ICA is a linear transformation that seeks to mini-
mize the mutual information of the transformed data, e(t), the fundamental assumption
being that individual components of the source vector, x(t), are mutually independent
and have, at most, one Gaussian distribution [3]. The ‘Infomax’ or independent com-
ponent analysis algorithm of Bell and Sejnowski [1] is an unsupervised neural network
learning algorithm that can perform blind separation of input data into the linear sum
of time-varying modulations of maximally independent component maps, providing a
powerful method for exploratory analysis of functional magnetic resonance imaging
(fMRI) data [11]. Also using the maximization of the negentropy, Girolami [4] intro-
duces an ICA ‘Infomax’ algorithm for unsupervised exploratory data analysis and for
general linear ICA applied to electroencephalograph (EEG) monitor output. Many so-
lutions for blind separation of sources are based on estimating a separation matrix with
algorithms, adaptive or not, that use higher-order statistics, including minimization or
cancellation of independent criteria by means of cost functions or a set of equations, in
order to Cnd a separation matrix [9,10]. From geometric considerations, and for linear
mixtures of bounded sources, various algorithms have been presented, all of which Cnd
a matrix that is similar to A by determining the slopes of, or any vector on, the edges
that are incident on any one of the vertices of the hyperparallelepiped that contains the
observation space, i.e., the independent components [13,14]. Another procedure derived
in a general context of independent component analysis for separating an instantaneous
mixture of sources, based on order statistics has recently been developed by Pham [12],
using a contrast function deCned in terms of the Kullback–Leibner divergence or of
the mutual information, and exploiting the information on the distribution support.
For non-linear mixtures, a modiCed self-organizing map algorithm based on competi-

tive learning has been developed by Lin and Cowan [8] to extract the local geometrical
structure of distributions obtained from mixtures of statistically independent sources and
to perform non-parametric histogram density estimation; this method is appropriate for
sharply peaked distributions. For post-non-linear mixtures, a batch procedure based on
a maximum likelihood approach has been developed by Taleb and Jutten [20]. In [15]
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an adaptive procedure is described for the demixing of linear and non-linear mix-
tures of two signals with probability distributions that are symmetric with respect to
their centres, and non-uniform, performing a Cxed piecewise linearization in the case
of non-linear mixtures in order to obtain the distribution axes of probability that are
parallel to the slopes of the parallelepiped for two sources.
ICA is a promising tool for the exploratory analysis of biomedical data. In this con-

text, a generalized algorithm modiCed by a kernel-based density estimation procedure
has been studied by Habl et al. [5] to separate EEG signals from tumour patients into
spatially independent source signals, the algorithm allowing artefactual signals to be
removed from the EEG by isolating brain-related signals into single ICA components.
Using an adaptive geometry-dependent ICA algorithm, it has been demonstrated in [16]
the possibility of separating biomedical sources, such as EEG signals, after analysing
only the observed mixing space, due to the almost symmetric probability distribution
of the mixtures.
Recently, some papers are exploring the hybridation of new optimization methods

or metaheuristics with classical criteria for blind source separation, by demonstrating
the beneCts oIered in linear and non-linear mixtures with this fusion against local
minima, using random elements and not computing Crst- or second-order derivatives,
searching wide solution spaces, Cnding optimal or near-optimal solutions, avoiding
getting trapped in suboptimal solutions, and providing a high degree of Jexibility in the
energy function [2,17,19]. The approach presented in this paper is intended to be valid
for any number of signals and for both linear and non-linear mixtures; it combines the
geometric properties of the distributions, which provide the independent components,
with the advantages of competitive neural networks, by means of a dynamic piecewise
linearization that is valid for all kinds of sources exhibiting a unimodal probability
distribution, such as Gaussian, Laplacian, Poisson or Gamma. A new idea introduced
in this paper is the hybridation of competitive learning and geometric methods, for
quality and better separation, with a simulated annealing technique in order to provide
fast initial learning and convergence.
The paper is organized as follows: in the next section the proposed method using

competitive learning (Section 2.1), simulated annealing (Section 2.2) and both tech-
niques simultaneously (Section 2.3) is introduced. Section 3 shows some improvements
concerning time convergence and accuracy that can be obtained in the network previ-
ously presented. In Section 4, the separation matrix obtained from the network and the
recursive source separation is shown, and some simulations are presented in Section 5.
Finally, the conclusions are summarized in Section 6.

2. Proposed method

We propose an original method for independent component analysis and blind separa-
tion of sources that combines adaptive processing with a simulated annealing technique,
and which is applied by normalizing the observed space, e(t), in a set of concentric
p-spheres in order to adaptively compute the slopes corresponding to the independent
axes of the mixture distributions by means of an array of symmetrically distributed
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Fig. 1. Array of symmetrically distributed neurons.

neurons in each dimension (Fig. 1). A preprocessing stage to normalize the observed
space is followed by the processing or learning of the neurons, which estimate the
high density regions in a way similar, but not identical to that of self-organizing
maps. A simulated annealing optimization method provides a fast initial movement
of the weights towards the independent components by generating random values of
the weights and minimizing an energy function, this being a way of improving the
performance by speeding up the convergence of the algorithm. In order to work with
well-conditioned signals, the observed signals e(t) are preprocessed or adaptively set
to zero mean, �, and unity variance, �, as follows:

ei(t) =
ei(t)− �i

�i
; i∈{1; : : : ; p}: (4)

In general, for blind separation and taking into account the possible presence of
non-linear mixtures, the observation space (e1; : : : ; ep) is subsequently quantized into n
spheres of dimension p (p-spheres), circles if p=2, each with a radius �k (k=1; : : : ; n)
covering the points as follows:

�k−1¡ ‖e(t)‖¡�k; �0 = 0 ∀k ∈{1; : : : ; n}: (5)

The integer number of p-spheres, n, ensures accuracy in the estimation of the inde-
pendent components, and it can be adjusted depending on the extreme values of the
mixtures, e(t), in each real problem. Obviously, the value of each radius, �k , depends
on the number of p-spheres, n. From now on, we shall use e(�k ; t) to denote the vec-
tor e(t) that veriCes (5). If, in some applications, the mixture process is known to be
linear, then the number, n, of p-spheres is set to 1, and a normalization of the space
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is obtained with �1 = 1. Although the quantization given in (5) allows a piecewise
linearization of the observed space for the case of non-linear and post-non-linear mix-
tures, it is also useful with the assumption of linear media since it allows us to detect
unexpected non-linearities in some real applications [16].

2.1. Competitive learning

The above-described preprocessing is used to apply a competitive learning technique
by means of a neural network whose weights are initially located on the Cartesian
edges of the p-dimensional space such that the network has 2p neurons, with each
neuron wi being identiCed with p scalar weights (wi1; wi2; : : : ; wip) per p-sphere. For
instance, for mixtures of two sources (p= 2) and n= 1 then e(t) = [e1(t); e2(t)]T and
the network has four neurons, i.e., the neuron w1 is represented by [w11(1); w12(1)],
and the neuron w2 is represented by the weights [w21(1); w22(1)] both neurons initially
located on the e1 edge; the neuron w3 is represented by the weights [w31(1); w32(1)],
and the neuron w4 is represented by the weights [w41(1); w42(1)] both neurons initially
located on the e2 edge. The Euclidean distance between a point, e(�k ; t), and the 2p
neurons existing in the p-dimensional space (Fig. 1) is

d(i; �k) = ‖wi(�k ; t)− e(�k ; t)‖; i∈{1; : : : ; 2p}; k ∈{1; : : : ; n}: (6)

A neuron, labelled i∗, in a p-sphere �k , is at a minimum distance from the p-
dimensional point e(�k ; t) and veriCes:

d(i∗; �k) = min{d(i; �k)}; i∗ ⊆ i∈{1; : : : ; 2p}; k ∈{1; : : : ; n}: (7)

The main process for competitive learning when a neuron approaches the density region,
in a sphere �k at time t, is given by

wi(�k ; t + 1) = wi(�k ; t) + �(t)f(e(�k ; t);wi(�k ; t)); i∈{1; : : : ; 2p} (8)

with �(t) being a decreasing learning rate. Note that a variety of suitable functions, �()
and f(), can be used. In particular, a learning procedure that activates all the neurons
at once is enabled by means of a factor, K(t), that modulates competitive learning as
in self-organizing systems, i.e.,

wi(�k ; t + 1) = wi(�k ; t) + �(�k ; t) sgn[e(�k ; t)− wi(�k ; t)]Ki(t);
Ki(t) = exp(−�−1(t)‖wi(�k ; t)− wi∗(�k ; t)‖2); i∗ ⊆ i∈{1; : : : ; 2p}: (9)

Here �(t) is a neighbourhood decreasing parameter, and �(t) is now geometry-dependent
and proportional to �(t), as follows:

�(�k ; t + 1) = �(t)�k�; 0¡�(t)¡ 1; k ∈{1; : : : ; n}; (10)

where � and �k modify the value of the learning rate, �(t), depending on the correlation
of the points in the observation space and on the number of p-spheres, in order to
equalize the angular velocity of the outer and inner weights. Note that the weight
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Fig. 2. Recursive neural network.

updating is carried out using the sign function, in contrast to the usual way [6]. As is
well known, the term K(t) modulates the learning p-sphere of jurisdiction depending
on the value of �(t). After the learning process, the weights are maintained in their
respective p-spheres, �k , by means of the following normalization:

wi(�k ; t) =
wi(�k ; t)�k
‖wi(�k ; t)‖ ; i∈{1; : : : ; 2p}; k ∈{1; : : : ; n}: (11)

After converging, at the end of the competitive process, the weights in (11) are located
at the centre of the projections of the maximum density points, or independent compo-
nents, in each p-sphere. It is easy to corroborate that the total number of scalar weights
wij is 2p2n. For the purpose of the separation of sources, a matrix, W , similar to A,
and verifying expression (3) is needed, and a recursive neural network similar to the
Herault-Jutten [7] network uses, as weights, a continuous function of the 2p2 scalar
weights per sphere, as shown in Section 2.1, Eq. (14), and in Section 4, Eq. (31),
for the general case of p sources (Fig. 2). Once the neural network has estimated the
maximum density subspaces by means of an adaptive Eq. (9), and due to the piece-
wise linearization of the observation space with a number n of p-spheres, a set, �, of
matrices can be deCned as follows:

�= {W�1 ; : : : ;W�n}; (12)
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where for p dimensions, the matrices W�k have the following form:

W�k =

(
W11�k : : : W1p�k

Wp1�k : : : Wpp�k

)
; k ∈{1; : : : ; n}: (13)

For linear systems or “symmetric” non-linear mixtures (Simulation 1), the elements
of this matrix, W�k , obtained using competitive learning are considered to be the
symmetric slopes, in the segment of p-sphere radius �k , between two consecutive
weights initially located on the same axis, for each dimension j, and Cnally computed
in (9) if the following transformation is carried out under geometric considerations:

W c
ij�k (t) =

w2ji(�k ; t)− w2ji(�k−1; t)
w2jj(�k ; t)− w2jj(�k−1; t) ; i; j∈{1; : : : ; p}; k ∈{1; : : : ; n}: (14)

The superscript, c, indicates that the separation matrix has been computed using com-
petitive learning, which will be useful in Section 2.3. Note that Eq. (14) works only
with even-labelled weights, 2j, and can be simpliCed for linear media if n = 1 and
�0 = 0; for instance, when p = 2 (j = 1; 2) it is practical to operate with only two
neurons, w2 and w4, in the circle �1. If n¿1, the use of several p-spheres is useful
for non-linearity detection, since n diIerent matrices, W�k in (13), are obtained for
successive values of �k . The total number of coePcients Wij�k is p(p−1)n, since the
value of the diagonal elements (i = j) in (14) is 1. Nevertheless, Eq. (14) is shown
in this form as a particular case of the expression valid for non-linear separation of
sources (Section 4).

2.2. Simulated annealing

Simulated annealing is a stochastic algorithm that represents a fast solution to some
combinatorial optimization problems. As an alternative to the competitive learning
method described above, we Crst propose the hybridation with a stochastic learning,
such as simulated annealing, in order to Cnd a fast convergence of the weights around
the maximum density points in the observation space e(t). This technique is eIective
if the chosen energy, or cost function, Eij, for the global system is appropriate. The
procedure of simulated annealing is well known [18]. Firstly, it is necessary to gen-
erate random values of the weights and, secondly, to compute the associated energy
of the system. This energy vanishes when the weights achieve a global minimum, the
method thus allowing escape from local minima. For the problem of blind separation
of sources we deCne an energy, E, related to the four-order statistics of the original p
sources, due to the necessary hypothesis of statistical independence between them, as
follows:

E =
p−1∑
i=1

p∑
j=i+1

Eij(t) =
p−1∑
i=1

p∑
j=i+1

〈cum222(si(t)sj(t))〉; i; j∈{1; : : : ; p}; (15)
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where cum22(si(t); sj(t)) is the 2× 2 fourth-order cumulant of si(t) and sj(t), i.e.

cum22(si(t); sj(t)) = 〈s2i (t)s2j (t)〉 − 〈si(t)2〉 〈sj(t)2〉 − 2〈si(t)sj(t)〉2 (16)

and 〈x(t)〉 represents the expectation of x(t).
This energy can be estimated using the methods described by Mansour et al. [10].

The change in global energy, QE, created by the new state after the generation of
random weights, is given by

QE = E(t + 1)− E(t): (17)

If QE¡0 then the process accepts the change. If QE¿0, the system accepts the
change providing P¿r, where r is a number randomly chosen for P, the Boltzmann
distribution given QE, computed using the equation

P = e−QE=T (t); (18)

where T (t) is the positive valued temperature at time t that regulates the search granu-
larity for the system’s global minimum. If QE¿0 and P¡r, then the network returns
all weights to their original state. In each iteration, by incrementing the time t by 1, a
new value for the temperature T (t) is calculated, using the following equation (cooling
schedule):

T (t) =
T0

1 + �(t)
; (19)

where T0 is the initial temperature. The parameter �(t) is variable, with �(t)=log(t) in
the Boltzmann machine but �(t) = t in the Cauchy machine. Although the main simu-
lated annealing algorithm has been shown above, some modiCcations to the procedure
can be made when this method is applied to the separation of sources. For instance, we
propose that the function �(t) in (19) should be �(t)= (1+ t)2−1, in order to provide
fast convergence. With this process, and using rij to denote a randomly chosen number
in the range [0; 1] for each component (i; j), a separation matrix is easily computed in
each p-sphere of radius �k by means of the following rule:

W s
ij�k (t) = 2rij − 1; i; j∈{1; : : : ; p}; i �= j; k ∈{1; : : : ; n}: (20)

The superscript, s, indicates that the separation matrix has been computed using sim-
ulated annealing. Note that, as in Eq. (14), the coePcients of the separation matrix in
(20) with indexes i = j are set to 1, and thus it is necessary to generate p(p − 1)
random weights instead of p2. Furthermore, the simulated annealing process is applied
directly to the elements of matrix W�k and does not work with the wij�k neurons.
Once a global minimum is obtained, when the energy in (15) vanishes, the value of
the W�k matrix is close to that of the original A matrix, i.e., the W�k coePcients
provide the independent components. This convergence will only be true and possible
if a good choice of the energy function, E, has been made. Theoretically, the proposed
energy function (15) depends on a four-order moment; it has been experimentally
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corroborated in several simulations as an estimator of statistical independence, with
good results being obtained by estimating statistics over N = 100 samples or more.
Although the use of simulated annealing does not guarantee Cnding the global optimum
with a low number of samples, it provides a good starting point for the competitive
learning process.

2.3. Competitive learning with simulated annealing

In spite of the fact that the technique presented in Section 2.2 is fast, the greater
accuracy achieved by means of the competitive learning shown in Section 2.1 led us
to consider a new approach. An alternative method for the adaptive computation of
the W�k matrix concerns the simultaneous use (or hybridation) of the two methods
described in Sections 2.1 and 2.2, i.e., competitive learning and simulated annealing.
Now, a proposed adaptive rule of the weights is the following:

Wij�k (t + 1) =W
s
ij�k (t)!(t) +W

c
ij�k (t)(1− !(t));

i �= j∈{1; : : : ; p}; k ∈{1; : : : ; n}; (21)

where !(t) is a decreasing function that can be chosen in several ways (Section 3).
The main purpose of the proposed equation (21) is to provide a fast initial conver-
gence of the weights by means of simulated annealing during the epoch in which the
adaptation of the neural network by competitive learning is still inactive. When the
value !(t) falls to zero, the contribution of the simulated annealing process vanishes
since the random generation of weights ceases, and the more accurate estimation by
means of competitive learning begins. The main contribution of simulated annealing
here is the fast convergence compared to adaptation rule (9), thus obtaining an accept-
able closeness of W�k to the distribution axes (independent components). However,
the accuracy of the solution when the temperature, T (t), is low depends mainly on
the adaptation rule presented in Section 2.1 using competitive learning since, with this,
the energy in (15) continues to decrease until a global minimum is obtained. The use
of diIerent approaches before the competitive learning process in order to estimate
the centres of mass, as does standard K-means, is a common practice in expectation
maximization Ctting of Gaussians, but the complexity of this procedure and the lack of
knowledge of the centroids means that simulated annealing is more appropriate, before
using competitive learning.
A measure of the convergence in the computation of the independent components

with the number of samples or iterations is shown in Figs. 3 and 4, which compare
the competitive learning and simulated annealing methods, using the root mean square
error, "(t), deCned as follows:

"(t) =
1

p(p− 1)


∑

i �=j
(Wij(t)− Aij(t))2



1=2

; i; j∈{1; : : : ; p}: (22)
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Fig. 3. Comparisons among CL and SA for p = 2.

Note that, a priori, the unknown matrix A(t) depends on time, although in the simu-
lations it remains constant (Section 5). One parameter that provides information con-
cerning the distribution of a signal, x(t), is the kurtosis, i.e.,

kx =
〈x(t)4〉 − 3〈x(t)2〉2

〈x(t)2〉2 ; (23)

where 〈x(t)〉 is the expectation of x(t). Fig. 3 shows the root mean square error for
linear mixtures of p=2 signals and n=1, with the two sources having kurtosis values of
#s1=−0:2 and #s2=0:2, respectively, in several experiments. Using simulated annealing
and 10,000 samples the error remains at " = 0:05, whereas using simulated annealing
and competitive learning the error becomes "=0:01 with the same number of iterations.
In Fig. 4, the root mean square error in the case of p=3 and n=1 is shown, the sources
having kurtosis values of #s1 = 3:1, #s2 = 3:5 and #s3 = 3:2, respectively. With a larger
number of sources to be separated, using simulated annealing and 15,000 samples the
error remains at "= 0:06, whereas using simulated annealing and competitive learning
the error becomes "= 0:01.
Although simulated annealing is a stochastic process, the error values presented here

are the result of several simulations and are for guidance only since each experiment
presents some randomness and is never the same because of the diIerent mixture
matrices and sources.
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Fig. 4. Comparisons among CL and SA for p = 3.

3. Some improvements

The techniques presented in Section 2 can be modiCed to improve basic performance
parameters such as time convergence and accuracy. In this section, we present some
experimental improvements that are really used in the simulations, and that do not
aIect the basic theoretical concepts shown before. For instance, in relation to linear
media, we propose eliminating some points that do not provide outstanding information,
either by previous preprocessing or adaptively; this is done by means of the average
correlation coePcient, computed as follows:

〈ce〉= 1
p(p− 1)

∑
i; j

ceij; ceij =
1
T

T∑
t=1

ei(t)ej(t); i; j∈{1; : : : ; p}; i¡j (24)

and deCning a parameter �:

�= exp(−〈ce〉2): (25)

For linear mixtures, many kinds of sources, such as speech signals, contain unnecessary
points near the origin that do not provide useful information when the computation of
the distribution axes is being carried out; these can be removed (not processed), with
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Fig. 5. Subspace associate and linear contour.

n= 1 in (5), if the following condition is veriCed:

‖e‖¡
∑
i

�i�= R; R¡�1; i∈{1; : : : ; p}; (26)

where R is the radius of the p-sphere.
Furthermore, and in order to improve time convergence in the competitive learning,

Eq. (9) can be simpliCed for certain applications in which only a winner neuron,
i, approaches the density region in each iteration, thus eliminating the term K(t). A
similar type of learning can be used when the learning space of each neuron, iq, is
reduced to its associate quadrant, qi, the range of qi being &=2; this is useful when
it is known in certain real applications that the mixing matrix, A, veriCes Aii¿Aij
(i; j = 1; : : : ; p). If this is so, only the representative winner neuron, i∗q , is active, and
it is only necessary to detect the quadrant that e(�k ; t) belongs to.
Another fact that speeds up the learning task concerns Eq. (9) for linear or non-linear

symmetrical mixtures (Figs. 5 and 6), since the symmetry of the distribution of points
means that each time a neuron i learns, the other neuron located on the same axis, j,
also learns but in the opposite direction and vice versa, as follows:

wi(�k ; t + 1) = wi(�k ; t) + (−1)win−i�(t) sgn(e(�k ; t)− wwin(�k ; t));
wj(�k ; t + 1) = wj(�k ; t) + (−1)win−j�(t) sgn(e(�k ; t)− wwin(�k ; t));
win∈{i; j}; i∈{1; 3; : : : ; 2p− 1}; j∈{2; 4; : : : ; 2p}: (27)

Some improvements are also feasible in the estimation of the distribution axes in
non-linear mixtures, since the spatial neuron order (Fig. 6) in successive p-spheres
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Fig. 6. (a) Space of 32-bit sources. (b) Nonlinear mixture space.

may change due to the form of the density distribution; for correct adaptive separation
in Eq. (32) it is necessary to compare, periodically and for each p-sphere, the following
two terms:

‖wi(�k ; t)− wi(�k−1; t)‖¿‖wi(�k ; t)− wj(�k−1; t)‖; i �= j∈{1; : : : ; 2p}: (28)

Once this expression is computed, the rearranging is done bottom-up, beginning from
the Crst p-sphere, if (28) is veriCed. Furthermore, in linear or non-linear mixtures, the
real observed signals may exhibit non-uniform density distributions (Fig. 6), and the
procedure adaptively generates variable p-spheres in accordance with the density of
points. Then, the distance between the circles, �k((), in time (, can be adjusted as a
function of the density of points, )k((), between two successive p-spheres:

�k((+ 1) = �k(() + *()k−1(()− )k(()); k ∈{1; : : : ; n}; (29)

where * is a learning rate.
In relation to simulated annealing, the use of this technique for the blind separation

problem, instead of on (18) and (19), is based on the following expressions:

P = e−QE=T
2(t); T (t) =

T0
(1 + t)2

: (30)

Eq. (30) allows us to Cnd a global minimum in a fast convergence time using the
energy function deCned in (15).
Moreover, there are several ways of implementing !(t) in (21) in order to switch

the two processes, simulated annealing and competitive learning. One of them is to
use, simply, a decreasing function !(t) similar to that of T (t) in (19) or (30). Another
one consists of using the competitive process when the energy decreases to a given
value. Finally, we propose switching the two processes when no changes in the energy
function, QE = 0, have occurred in a given time.

4. Separation matrix

Since the main simulations presented in this paper refer to linear mixtures of signals,
we will use expression (14) for computation of the weights, although in the general
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Fig. 7. Neurons conCguration.

case and for pure non-linear mixtures (without symmetry at the origin), the above
expression must be replaced by a similar one (Fig. 7), as follows:

W c
ij�k (t) =

w+(j)i(�k ; t)− w+(j)i(�k−1; t)
w+(j) j(�k ; t)− w+(j) j(�k−1; t) ; i; j∈{1; : : : ; p}; k ∈{1; : : : ; n};

+(j)∈{+(1)¡+(2)¡ · · ·¡+(p) |d(+(j); �k)¡d(+(m); �k)};
m∈{1; : : : ; 2p}; m �= j: (31)

Note that Eq. (14) is a particular case of Eq. (31), with +(j) = 2j, and that the coeP-
cients W c

ii�k = 1 in both expressions. Eq. (31) means that the p-dimensional subspace
associated to the neurons labelled (+(1); : : : ; +(p)) around point e� provides the linear
contour, between the radius �k and �k−1, where the mixture can be considered linear.
The number of subspaces generated by the neurons (+(1); : : : ; +(p)) in a p-sphere is
2p, as is the number of matrices W�k , and the total number of coePcients W c

ij�k in
the p-dimensional space is 2pp(p− 1)n.
By these means, we recover the sources for non-linear and post-non-linear mixtures,

as well as for the linear case. For the purpose of separation, the network uses typical
recursive recall, taking into account the p-sphere quantization in the observation space
and the matrix computed in (21), i.e.

si(t + 1) = ei(�k ; t)−
p∑
j=1

Wij�k (t)sj(t);

i∈{1; : : : ; p}; i �= j; k ∈{1; : : : ; n}: (32)

This expression is also used by the simulated annealing process in order to compute the
energy function in (15) and (16). Also note that, for non-linear mixtures, expression
(32) has to be modiCed due to the piecewise linear approximation and for geometric
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reasons, since the slopes or W c
ij�k coePcients belonging from �2 to �n normally does

not cross the origin (e1; e2) = (0; 0) and Eq. (2) now becomes

s(t) =W−1(�; t)(e(�; t)− ne(�)); (33)

where ne(�) are the p coordinates of the slopes W c
ij�k corresponding to the following

equation in the plane (i; j), in each one of the 2p subspaces:

ei(�) =Wij(�)ej(�; t) + nei(�); i; j∈{1; : : : ; p}: (34)

Then, Eq. (32) can be rewritten as follows:

si(t + 1) = ei(�k ; t)− ne(�k ; t)−
p∑
j=1

Wij�k (t)sj(t);

i∈{1; : : : ; p}; i �= j; k ∈{1; : : : ; n}: (35)

5. Simulation results

Three simulations are presented in order to show the ePciency of the pro-
posed algorithms. The crosstalk parameter, cti, is used to verify the similarity
between the original, xi, and separated, si, signals with N samples, and is deCned as
follows:

cti = 10 log

(∑N
t=1(si(t)− xi(t))2∑N

t=1(si(t))
2

)
; i∈{1; : : : ; p}: (36)

The Crst simulation, Figs. 5a, b, corresponds to the synthetic non-linear mixture pre-
sented by Lin and Cowan [8], for sharply peaked distributions, the original sources
being digital 32-bit signals, as follows:

e1(t) =−2 sgn[x1(t)]x1(t)2 + 1:1x1(t)− x2(t);

e2(t) =−2 sgn[x2(t)]x2(t)2 + 1:1x2(t) + x1(t): (37)

As shown in Fig. 6, good estimation of the density distribution is obtained with 20,000
samples, and using n = 4 p-spheres (p = 2). For the purpose of the separation, the
four equation matrices obtained by means of Eq. (12), at the end of the competitive
learning process, were:

W�1 =

(
1 1:7

−1:6 1

)
; W�2 =

(
1 0:25

−0:22 1

)
;

W�3 =

(
1 0:2

−0:22 1

)
; W�4 =

(
1 0:1

−0:15 1

)
: (38)
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Fig. 8. Mixture space of two real sources.

Fig. 9. Initial weights with SA.

The second simulation, shown in Figs. 8–11, concerns the separation of a mixture of
two real signals, the Spanish words “dedos (Cngers)” and “muñeca (doll)”, captured
with a 12-bit converter and presenting a signal-to-noise ratio of 24 dB. The correlation
coePcient of the original sources was 〈cs〉=−0:05, and the kurtosis value was #s1=4:7
and #s2 = 4:2 for s1(t) and s2(t), respectively. The original, A, and computed, W�1,
matrices obtained with 10,000 samples were:

A=

(
1 −0:8
0:8 1

)
; W�1 =

(
1 −0:791

0:788 1

)
: (39)

The crosstalk parameter of the separated signals, s1(t) and s2(t), was ct1(t)=−24 and
ct2(t) =−23 dB, respectively.
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Fig. 10. Final density estimation and weight matrix.

Fig. 11. Sources, observations and separated signals.

It has been veriCed that the greater the kurtosis of the signals the more accurate
and faster is the estimation, except for the case in which the signals are not well
conditioned or are aIected by noise, and this is so since a high density of points on
the independent components speeds up convergence when the competitive learning of
Eq. (9) is used. Moreover, since the distribution estimation is made in the observation
space, e(t), and the separation is blind, it is useful to take into account the kurtosis of
the observed signals in order to test the time convergence and the precision.
A third simulation is presented in Figs. 12–15 with three synthetic supergaussian sig-

nals. Note that, although the procedure computes the weights in the three-dimensional
space, Figs. 12–14 show the projection of the three-dimensional observation space
(e1; e2; e3) onto the (e1; e2) plane in order to conCrm that the third components of
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Fig. 12. Mixture of three sources projected on a plane.

Fig. 13. Initial weights with SA.

matrix W�k are correct. Therefore, the weight w6 provides, in this plane (e1; e2), a
slope value of +1, corresponding to the quotient (W13=W23) in (14), with (i; j)=(1; 3)
and (2; 3). The correlation coePcient for the original sources was 〈cs〉 = −0:08, and
the kurtosis, #e, of the three observed signals, was #e1 = 3:4, #e2 = 2:6 and #e3 = 3:2.
The original, A, and weight, W�1, matrices obtained with 15,000 iterations were:

A=




1 0:5 0:5

0:5 1 0:5

0:5 0:5 1


 ; W�1 =




1 0:494 0:492

0:505 1 0:511

0:519 0:502 1


 : (40)
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Fig. 14. Final density estimation and weight matrix.

Fig. 15. Sources, observations and separated signals.

The crosstalk parameters of the three signals s1(t), s2(t) and s3(t) were ct1(t)=−22 dB,
ct2(t) =−32 dB and ct3(t) =−26 dB, respectively.

6. Conclusions

We have shown a new, powerful adaptive-geometric method based on competitive
unsupervised learning and simulated annealing, which Cnds the distribution axes of
the observed signals or independent components by means of a piecewise linearization
in the mixture space, the use of one of the methods as simulated annealing in the
improvement and optimization of a four-order statistical criterion being an experimental
advance.
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The main diIerences compared to papers working in the same line, such as [8], are
the use of an optimization method as simulated annealing that speed up convergence,
and a network with a concrete number of neurons per dimension also with geometric
properties by computing the slopes of each subspace generated. We have shown how
to separate the sources in the general non-linear case by means of Eqs. (31)–(35),
since the computation of the sources is diIerent when piecewise linearization is used
in non-linear mixtures, the network working for linear, post-non-linear and general
non-linear mixtures of p¿2 sources with unimodal distributions.
The algorithm, in its current form, presents some drawbacks concerning the applica-

tion of simulated annealing to a high number, p, of signals, and the complexity of the
procedure O(2pp2n) for the separation of non-linear mixtures, that also depends on the
number, n, of p-spheres; the Cner the partition the better the separation but the more
complex the learning, and perhaps to parallelize the procedure could be a solution in
order to use a cluster of computers for applications with a high number of sources or
with high number of p-spheres for non-linear applications.
In spite of these questions that remain open, the time convergence of the network

is fast, even for more than two subgaussian or supergaussian signals, mainly due
to the initial simulated annealing process that provides a good starting point with
a low computation cost, and the accuracy of the network is adequate for the sepa-
ration task, the competitive learning being very precise, as several experiments have
corroborated.
Besides the study of noise, future work will concern the application of this method

to independent component analysis with linear and non-linear mixtures of biomedical
signals, such as in electroencephalograph and functional magnetic resonance imaging,
where the number of signals increases sharply, making simulated annealing suitable in
a quantized high-dimensional space.
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