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ABSTRACT
This paper deals with the problem of blind separation of
sources (BSS). In the literature, one can find many Inde-
pendent Component Algorithms (ICA) to solve the BSS.
To demonstrate the performances of their algorithms, re-
searchers often use different methods or performance in-
dexes depending on their source signals and their applica-
tions. Many methods and performance indexes can not be
used to compare two different algorithms applied to differ-
ent signals. Most of the widely used performance indexes
or methods are mentioned and discussed hereafter. We also
give many examples to show limitations or drawbacks of
some performance indexes or methods.
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1. Introduction

Since 1984, when it was firstly introduced by Hérault et al.
[1, 2], the problem of blind separation of sources (BSS)
has been considered as an important problem in the signal
processing fields. The blind separation of sources problem
involves in the separation of unknown and statistically
independent signals (sources), issued by an unknown
channel, by only using the observation of their mixture
signals given as the sensor outputs. The BSS problem is
widely known as the Independent Component Analysis or
ICA.

Actually the BSS problem can be found in many ap-
plications (such as radio-communication (in mobile-phone
as Spatial Division Multiple Access (SDMA)), free-hand
phone, speech enhancement, separation of seismic signals,
sources separation method applied to nuclear reactor moni-
toring, airport surveillance, noise removal from biomedical
signals) [3]. Hundreds of different publications and papers
concerning the BSS can be found in the literature [3].

Since the last decade, dozens of ICA algorithms

have been developed and presented. Many researchers
from over a dozen different countries around the globe are
actually working on this subject.

On the other hand, we should mention that normally
the authors use different methods or performance indexes
to evaluate their algorithms. This fact makes the com-
parison between two algorithms, applied in different cir-
cumstances to separate different types of sources, can be
very difficult (even impossible in some cases). Up to now,
there is no ”Bench Mark” for the BSS or ICA algorithms.
Here we will discuss and present the advantages as well
the drawbacks of the different performance methods or in-
dexes.

2. Mixture Model

Let us denote by S(t) = (si(t)) the m � 1 source vector
and by Y (t) = (yi(t)) the n � 1 vector of the observed
signals, see Fig. 1. In the case of instantaneous mixture,
the observation (mixture) vector Y can be written as:

Y (t) = AS(t) +N(t): (1)

Where A denote the full-rank n � m mixture matrix and
N(t) is the noise. Using the n � m estimated separating
matrixB, the m� 1 estimated (or separated) signal vector
X(t) = (xi(t)) can be obtained as:

X(t) = BY (t): (2)
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Figure 1. Channel Model

It is well known that the separation of sources can be
done up to a scalar factor and a permutation [4, 5]. In this
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case the global matrix G is given by the following equa-
tion:

G = BA = P� (3)

here P is any permutation matrix and � is any full rank
diagonal matrix. When G = P�, it said that the global
matrix becomes a general permutation matrix and that the
blind separation of sources is done. Equation (3) is equiva-
lent to:

B = P�A#; (4)

here A# denotes the pseudo-inverse (or the inverse, when
m = n) of the mixing matrix A. Generally, researchers
assume that m = n. In some cases, m < n and the mixture
is called undercomplete (underdetermined). Otherwise
when m > n the mixture is called overcomplete (overde-
termined).

Finally, let N denote the total number of the observed
samples of the vector Y . In this case, one can
denote byY(N) = (Y (1); � � � ; Y (N))T the n�N matrix
of the mixing signals, X(N) = (X(1); � � � ; X(N)T the
m � N matrix of the estimated signals and by S(N) =
(S(1); � � � ; S(N))T the m�N matrix of the sources.

3. Algorithms’ Performances

To evaluate their algorithms, researchers are using different
methods and performance indexes. In this section, we fo-
cus on the performance indexes or evaluation methods that
have been used by different researchers and that can be gen-
erally applied to any algorithm. We should notice here that
in some papers, authors proposed some evaluation meth-
ods or performance indexes which are linked to their own
researches or algorithms and they can not be used easily
to evaluate different algorithms. Such performance indexes
will be omitted in this paper.

3.1 Crosstalk, SNR & SINR

To indicate the performance of their algorithms, re-
searchers are using the crosstalk index [6, 7, 8, 9, 10, 11].
Let us suppose that the jth output signal xj is the estima-
tion of the ith source si, due to the permutation problem.
By definition the crosstalk index of the jth estimated sig-
nal, is given by:

CrossTalkj
def
= 10 log10

E(xj � si)
2

Es2i
(5)

here E stands for the expectation. It is clear from the above
definition (5) of the crosstalk that:

� We can obtain m different crosstalk values. The sig-
nificant value of the crosstalk should be considered as
the minimum (or the average) of thesem different val-
ues.

� To calculate the crosstalk from its definition (5), one
should have the original sources which means that the
crosstalk can be estimated in our simulations but it can
not directly be applied to real-world experiments.

On the other hand the crosstalk can be considered as the
inverse of the Signal to Noise Ratio (SNR) which has been
used by many other researchers [12, 13, 14, 15]. Similar
index has been used by other researchers as the Signal to
Interference Noise Ratio (SINR) [16, 17]:

SINRj
def
=

jBjAij
2Es2i

BjRB
T
j

; (6)

where Bj is the jth column of B, Ai is the ith row of A
and R is the true autocovariance matrix of the interference
consisting of the other sources and the background additive
noise (if the channel has an additive noise). Same as for
the crosstalk, the estimation of SNR and the SNIR needs
the knowledge of the sources (at least the power with other
features of the signals) and the mixture matrix. On the other
hand, these indexes can be easily used to compare different
algorithms or to evaluate an algorithm in different cases.

3.2 Gap or Distance to Diagonal Matrix

Let Â = B# denote the estimated mixture matrix. Let A
and Â be two invertible matrices, and define the matrices
with unit-norm columns:

A = A�
#

Â = Â�̂
#

(7)

here� = (Æij) (resp. �̂ = ("ij)) is a diagonal matrix such
that Æii = kAik (resp. "ii = k bAik) is the norm of the ith
column of A (resp. Â). Comon in [18] gives a definition

of a gap or a distance measure from the matrixD = Â
#
A

to a diagonal matrix by:

�(D)
def
=

X
i

0@X
j

jdij j � 1

1A2

+
X
j

 X
i

jdij j � 1

!2

+
X
i

������
X
j

jdij j
2
� 1

������+
X
j

�����X
i

jdij j
2
� 1

����� (8)

He proved that the above gap is invariant by post-
multiplication of the form P� (i.e. by any general per-
mutation) and that �(D) () B = P�A #. Similar to
the case of the SNR, the gap of Comon can not be estimated
without the knowledge of the mixture matrix.

3.3 Performance Index or Crosstalk Error

Many researchers have used the ”Crosstalk Error” or the
”Performance Index” to demonstrate the performances of
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their algorithms [19, 20, 21, 22, 23, 24, 25, 26, 27]. They
defined the Crosstalk Error as:

Ce(G)
def
=

nX
i=1

0@ nX
j=1

jgikj

maxk jgikj
� 1

1A
+

nX
j=1

 
nX
i=1

jgikj

maxk jgikj
� 1

!
(9)

It is clear that the ”crosstalk error” is invariant by a
multiplication of a permutation matrix. At the same time,
one can easily verify that the crosstalk has a positive value
and it is equal to zero when the global matrix G satisfies
equation (3). Normally researchers gives the value of Ce
in dB.

Theoretically, this index is a good performance index.
On the other hand, it is very sensitive to numerical error and
meaningless in many practical cases. In fact, let us consider
the following two matrices:

G1 =

0BBBB@
100000 10 1 2 4

1 0 0 0 0
10 0 0 0 0
1 0 0 0 0
8 0 0 0 0

1CCCCA (10)

G2 =

0BBBB@
100000 10 1 2 4

1 0 0 0 0
10 0 0:01 0 0
1 0 0 0 0
8 0 0 0 0

1CCCCA (11)

One can verify that Ce(G1) = 0:00037 = �34:32 dB and
that Ce(G2) = 0:01137 = �19:44 dB. Neither G1 nor
G2 verify equation (3).

3.4 Rejection Level

The Mean Rejection Level or Rate (MRL or MRR) has
been defined in many papers [28, 29, 30, 31, 32] as the
mean power of the interference of the jth source into the ith
estimated sources, i.e.:

MRLij
def
= E g2ij : (12)

Considering the fact that the estimation of the global ma-
trix depends on the total number of samples N , other re-
searchers prefer to use the Asymptotic Rejection Level
(ARL) [33, 34] defined as:

ARLij
def
= lim

N!1
E g2ij : (13)

Based on the definition of the MRL, one can defined the
Global Rejection Level (GRL) as:

GRL
def
=
X
i6=j

MRLij : (14)

Unfortunately, the GRL also is sensitive to numerical val-
ues and in some cases it can give a wrong impression: Let
us consider the following three matrices

G4 =

0BBBB@
1 10 10 10 10
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1CCCCA (15)

G5 =

0BBBB@
1000000 10 10 10 10

0 10 0 0 0
0 0 10 0 0
0 0 0 10 0
0 0 0 0 10

1CCCCA (16)

G6 =

0BBBB@
10 10 0 0 0
0 10 10 0 0
0 0 10 10 0
0 0 0 10 10
0 0 0 0 10

1CCCCA (17)

One can verify that the above three matrices have the same
value of GRL. On the other hand it is clear that:

� G5 corresponds to an acceptable solution of the blind
separation problem.

� In the case ofG4 all the sources have been estimated
correctly except the first one.

� G6 means that the estimated signals are not indepen-
dent signals except the last one.

3.5 Global Index

In [35, 36], the Global index has been used and defined by
the following equation:

� (G(k))
def
= 100

X
j

�
max
i

�
jgij jP
i jgij j

�
�

1

2

�
; (18)

The authors describe that index in the case of j = 1; 2 (i.e.
we have two sensors and two sources1). The idea of having
a percentage performance index is a nice idea and one can
verify, in the case of m = n = 2, that this index will be
equal to hundred (which indicate the best solution) when
the equation (3) holds. Unfortunately, the opposite isn’t
true, i.e. that index can attain the 100 without meaning that
the global matrix G satisfies the equation (3), that can be
easily verified by using the following matrices

G7 =

�
1 0
0 1

�
, G8 =

�
0 1
1 0

�
and G9 =�

1 1
0 0

�
, here �(G7) = �(G8) = �(G9) = 100.

1This index can be generalized as:

� (G(k))
def
= 100

P
n

j=1

�
maxi

�
jgij jP
i
jgij j

�
�

1

n

�
.
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3.6 Error Norm

Using a matrix norm, the authors of [37] define the Error
Norm as:

EN(A)
def
= kA� bAk (19)

where bA is the estimated mixing matrix (i.e. bA = B
#)

and kAk is the matrix norm ofA (one can use by example

the Frobenius matrix norm [38], i.e. kAk =
qP

i;j a
2
ij ).

To use the EN index, one should know the mixing matrix.

Unfortunately, this index is variant by matrix multi-
plication (i.e., bA should be exactly the matrixA and it can
not be equal toAP�, for any� full-rank diagonal matrix
and a P permutation matrix). In real world applications,
the EN is not a good index, as one can conclude from the
following example:

A1 =

�
10000 �10000
5000 600

� bA1 =

�
9999 �10001
5001 599

�
A2 =

�
0:5 0:6
0:4 0:8

� bA2 =

�
�0:5 1:6
1:4 �0:2

�
One can verify that the EN(A1) = EN(A2) but it is clear
that the estimation in the case ofA1 is much better than the
one ofA2.

3.7 Symbol Error Rate

In some applications, the sources can be special signals (as
for example Nbinary signals) and one can find some per-
formance indexes related to the type of the signals [37] as
the ”Symbol Error Rate” (SER):

SER
def
=

Number of erroneous estimated source bits
Number of total source bits

(20)

3.8 Mixture & Global Matrices

By writing down the global and mixing matrix, one can get
an idea about the performances of the algorithms presented
on [39, 40, 41, 42].

By plotting the diagonal elements and the off-
diagonal elements of the global matrix, the algorithm
performances were shown in [43]

Other researchers prefer to give the mixture matrix
and the root-mean-square error and estimation mean esti-
mated in 100 Monte Carlo runs [44].

3.9 Scatter Plot

Using the fact that two independent signals have a rectan-
gular shape in their own (or phase) plan which is called the
scatter plot of the two signals, in [45, 46, 47, 48] the authors

plot the scatter plots of the sources, the mixing signals and
the estimated signals to show that the separation was done.

3.10 Plotting Of The Estimated Sources

Some researchers plot all the signals involved in their
problem as the sources, the mixing signals and the esti-
mated sources and let the conclusion to the readers as in
[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].
The problems of the plotting strategy, as in this subsection
and the previous one, that it can not be used easily to com-
pare two different algorithms applied to different signals.
At the same time, one should mention that the sources here
should be known.

3.11 Plotting of the Error Signals

In some cases, the plot of the signals does not have any spe-
cial meaning and it can be difficult to show the performance
by comparing the sources with the estimated sources. In
[64] the authors propose the performance of their algo-
rithm by plotting the error signals (the difference between
the original signal and the estimated one). As the previous
two methods, one should have the original signals. In addi-
tion here, we should know the mixing matrix (an estimated
signal should be the exact estimation of the corresponding
source signal, no permutation neither a scalar factor are al-
lowed).

3.12 Real World Signals

In all of the previous methods, one should assume that
the mixing parameters or the sources are known. In this
section we will briefly mention three different methods
can be used to deal with the real world applications (i.e.
neither the sources nor the mixing matrix are known).

In [65], the authors measure the performance of
their algorithm by rate of the speech recognition results:
They test their algorithm using an automatic speech recog-
nition system trained on the Wall-Street Journal task to
test its performances on the recorded and separated signals.

In a mobil phone application, the source signal can
be considered as the signal recorded with the mobil unite
mounted on a mouth simulator and the measurement done
without any disturbance in anechoic room [66].

To show the performance of their algorithms, the au-
thors in [67] used some recorded speech signals as inputs to
two speaker devices. The sources signals were the speaker
output signals. The observed signals were detected by two
microphones (nondirectional microphones). In their exper-
iments, the authors compare the separated signals with the
original recorded signals.
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4. Conclusion

In this paper, we emphasize and discuss the methods
to compare and demonstrate the performances of blind
separation of source algorithms. The most used perfor-
mance indexes or performance plotting methods have been
discussed here. We show that some methods can be used
to compare different algorithms applied to different signals.

Up to now, most of the mentioned methods can be
used uniquely in the case of simulated experiments (i.e. the
sources or the mixing parameters are known). However
some methods for real world signals have been presented,
but these methods depend on the applications and they can
not be considered as standard indexes or methods. Finally,
we should mention just till nowadays, no ”Bench Mark”
has been made or used for the blind separation of sources
algorithms.
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problème de séparation de sources,” Traitement du signal,
vol. 5, no. 6, pp. 389–403, 1988.

[5] P. Comon, “Analyse en composantes indépendantes et iden-
tification aveugle,” Traitement du signal, vol. 7, no. 5, pp.
435–450, December 1990.

[6] C. Jutten, L. Nguyen Thi, E. Dijkstra, E. Vittoz, and Caelen
J., “Blind separation of sources: An algorithm for separation
of convolutive mixtures,” in International Signal Processing
Workshop on Higher Order Statistics, Chamrousse, France,
July 1991, pp. 273–276.

[7] C. Jutten, A. Guerin, and Nguyen Thi L., “Adaptive op-
timization of neural algorithms,” in IWANN 91, Artificial
neural networks, Granada, Spain, September 1991, pp. 54–
61.

[8] C. Jutten, L. Nguyen Thi, and J. Hérault, “Nouveaux algo-
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