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Abstract— In this manuscript, the problem of compressive 

sampling of intercepted sparse signals is addressed. Assuming 

that the intercepted signals are sparse in frequency domain, we 

propose a new algorithm based on shifting and filtering concepts 

to perform a compressive sampling. Schematic circuits to carry 

out the undersampling step and the recovery of original signals 

are also proposed. Simulation results are discussed. Finally, 

conclusions and future works are presented. 
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I.  INTRODUCTION 

A major challenge of modern societies is the limitation of 
natural resources. From wireless telecommunication 
engineering point of view, the limitation of available spectrum 
is a strong restriction for developing new systems and 
applications [1]. To deal with an increasing demand on 
frequency bandwidths, new concepts of radio communication 
have recently been proposed. In fact, for developing new civil 
and military applications, many researchers and engineers are 
involved in cognitive radio techniques and concepts. A main 
idea of cognitive radio consists on sensing the spectrum to use 
available parts of it. In this case, the signal of the primary user, 
i.e. the one who is holding the license of that part of spectrum, 
should be intercepted and analyzed. In order to wisely exploit 
the spectrum, one should monitor a large radio frequency 
bandwidth. To reach such goal, researchers and engineers are 
developing two major research fields: Compressive Sensing and 
Compressive Sampling [2]. 

In this manuscript, the compressive sampling problem is 
considered [3]. To explain the importance of such problem, let 
us suppose that our wideband antenna can intercept signals with 
frequency between few hundred kilo Hz till almost 2GHz, in 
this case the intercepted signal should sampled at a 4GHz 
sampling rate which create huge amount of data to be stored or 
processed. In many situations, the spectrum is not well used and 
the intercepted signals are sparse in frequency domain. In this 
case, compressive sampling techniques consist on using a much 
lower sampling rate but keeping all necessary information [4]. 

In 1967, the pioneer works of Landau [5] proved the under 
sampling concept. However, the first implemented algorithms 
are mostly proposed at the beginning of this century [6-7]. 
Venkataramani and Bresler in [7] proposed an optimal sub-
Nyquist algorithm to deal with multi-band signals. In [8], the 
authors show that under sampling techniques can be deployed 
to deal with correlated signals. Recently, Chen et al. conducting 
sub-Nyquist non-uniform sampling using a filter-bank [9-10]. 

Finally, many wireless algorithms deal with baseband 
signals. In this case, transmission channels should be modeled 
by complex random variables; it is worth mentioning that 
complex random variables could be considered as a vector of 
two real random variables. 

II. MATHEMATICAL MODEL & BACKGROUNDS 

Let x(t) be a continuous complex sparse signal in the 
frequency domain, i.e. frequency band-limited to a subset F 
which is a union of m bounded intervals [11]: 
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Let us denote by     = bm the maximum frequency of x(t). 
The Fourier transform      of x(t) is defined by: 
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In the following, small letter are used to represent signals in 
time, while capital letter to represent them in frequency domain. 
In addition, x(t) is representing a continuous time signal and 
x[n] is the corresponding sampled signal. The spectral 
occupancy Ω of x(t) over the spectral support F is defined as 
follows [12]: 
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where                 is the Lebesgue’s measure for  
the spectral support F. It is clear that the Nyquist sampling 
frequency     should respect the following constraint: 
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Hereinafter, we derive a compressed sampling algorithm to 
reduce the sampling frequency to its minimum limit      
which is the Nyquist - Landau minimal sampling rate [5]. 

 

III. COMPRESSIVE SAMPLING 

Here, we introduce the concept of conducting a compressed 
multicoset sampling by using frequency-shifting and filtering 
techniques in order to satisfy the Nyquist - Landau minimal 
sampling rate. The idea of frequency shifting and filtering is 
well known in the digital signal processing community and it 
has been used in various applications especially in wireless 
telecommunication, such as the removal of co-channel 
interference [13]. With any loss of generality, intercepted signal 
x(t) can be considered as analytical signal, i.e. its spectrum only 
contents positive frequency                . In fact, in 
the case of real signals, the following steps of the proposed 
algorithm should be adjusted to take into consideration two 
main modifications: 

 

 The symmetrical part of the spectrum (for real 
signals, the amplitude of the Fourier transform 
       should be an even function, i.e.       
               . 

 The frequency shifting should be realized by using 
a cosine function                    instead            
of a complex exponential function            
                   . The main difference is 
that the Fourier transform of the cosine is the sum 
of two impulse functions 

        
                     

 
, where δ(f) is Dirac's 

impulse function. In this case, one should pay 
attention to spurious frequency shifting, i.e. any 
frequency shift is a kind of a dual of increasing and 
decreasing frequency shifting. 

 

In real scenarios, the spectrum of intercepted signals is 
unknown. However, the frequency bandlimits of signals of 
interest could be perfectly or roughly known by guessing or 
recognizing the wireless transmission activities of the primary 
user (for example, the primary user is using a modem or a cell 
phone operating in GSM- GPRS, General Packet Radio 
Service, 3G mode or in WiMAX, Worldwide Interoperability 
for Microwave Access as defined in the IEEE 802.16, etc.) It is 
worth pointing out that the frequency bandlimits of signals of 
interest could be also estimated [12-14]. In [15-16], the authors 
proposed a blind sequential forward selection (SFS) algorithm 
to estimate the frequency bandlimits. Hereinafter, we consider 

that the frequency bandlimits are well known or well estimated. 
The effect of the estimation error is beyond the scope of this 
manuscript. 

To simplify our discussion, we will discuss the case of 
analytical complex signal x(t) who is the sum of two other 
signals  x(t)  = x1(t) + x2(t) where x1(t) is a low pass analytical 
signal and x2(t) is a band-pass one, see Fig. 1. 

 

 

Figure 1: Signal Spectrums 

 

As the highest frequency of X2(f) is c, the Nyquist frequency 
should be       . To justify the computation efforts of 

compressive sampling techniques, signals should be narrow 
passband ones, i.e. in our case       as well as    . 
However, the Nyquist-Landau lower limit of x(t) is given by: 

 

                                       (5) 

 

The main idea of our algorithm consists on creating a new 
lowpass analytical signal z(t) by shifting x2(t) to lower 
frequency band, see the schematic presented in Fig. 2. 

 

Figure 2: The modified low-pass signal z(t). 

 

It is clear that z(t) can be obtained as the output of a lowpass 
filter excited by y(t), see appendix A: 
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The spectrum Y(f ) of y(t) is given in Fig. 1.  

                               

                              

In figure (1), the Fourier transform of z(t) = y(t) *h(t) 
becomes the highlighted dashed rectangular part. Fig. 2 shows 
that the recovery of the original signal x(t) requires the 
following constraint: 

             
   

 
                        (7) 

The above constraint could be easily satisfied when the 
bandpass parts of the original signal are relatively narrow 
bands. It becomes obvious that z(t) is an analytical lowpass 
signal witch its highest frequency is below           . 
Therefore a sampling circuit with a sampling frequency of fNL, 
see equation (5), can correctly generate a digital copy of z(t) 
and allow us to easily recover z(t) using z[n] = zs(nTs) (Ts is the 
sampling period and the sampled signal                 

   ) according to a lowpass recovering techniques, see 
appendix B. 

 

In order to complete our study, two major problems should 
be addressed: 

 

 Once, z[n] is obtained, any digital signal 
processing algorithm can be used to process this 
signal. However, how can we recover the original 
signal x(t) from z[n]? In order to recover the 
original signal, we propose the following circuit 
based on a frequency shifting and using two 
different low-pass filters (where the cut off 
frequency (COF) of the first one should be  
           and the COF of the second filter 
is a) in addition with a bandpass filter that its lower 
COF is b and its upper COF should be c, see Fig. 
3. 

 

Figure 3: The recovered signal       

 

In some identification or information extraction 
applications, one should have the exact frequency band of the 
original signal. In our case, we obtained z[n] which is a 
modified copy of x[n] using compressive sampling. The second 
problem to be addressed is the follows: Is it possible to have 
x[n] by only using z[n]? if x[n] is needed, then one can use the 
schematic shown in Fig. 4. 

 

Figure 4: The recovered signal        

 

IV. SIMULATION RESULTS 

Various simulation results have been conducted to evaluate 
the overall performance of our algorithm. In this section, the 
outcomes results of a typical and generic study is shown and 
discussed. 

The original intercepted signal x(t), as shown in Fig. 5, is set 
as the sum of two chrip signals: The instantaneous frequency of 
the first one is linearly increasing between         [0, a = 400Hz], 
while the second chrip instantaneous frequency is also linearly 
increasing in [b = 2Khz, c = 2100Hz]. The original sampling 
frequency (oversampling) was fixed at 10kHz. It is clear that 
the used signal satisfies the constraint (1). 

 

 

 



 

Figure 5: The intercepted signal x(t) and its Fourier transform X(f). 

 

The analytical signal xa(t) has been obtained using a Hilbert 
transform (TH):  

xa(t) = x(t)+j TH(x(t)) 

where j stands for the complex number, see Fig. 6. The 
latter signal was used as the input of the circuit proposed in Fig. 
2. In this case the Nyquist-Landau sampling rate of xa(t) should 
be equal to 2(c + b - a) = 2*(2100-2000+400)=1KHz. However 
to avoid using high order passband filter (in our experimental 
studies, 4th order lowpass and passband butterworth filters are 
implemented) and some instability problems due to the 
simulation environment of Matlab, we decided to shift the x2(t) 
by b - 1.1 a = 1560Hz. Fig. 7 shows the shifted signal y(t).The 
compressive sampling rate is selected to be 2 KHz instead of 
the original 10Khz. Fig. 8 shows that the obtained z[n] sampled 
at 10 Khz or 2 KHz have exactly the same information. Fig. 9 
shows the recovered original signal       

Finally, it is worth be mentioning that the digital lowpass 
and bandpass analytical filters could be implemented using the 
method proposed in [17] and the references cited therein. 

 

 

 

 

 

 

 

 

 

 

Figure 6: The intercepted analytical signal xa(t) and its Fourier transform. 

 

 

 

V. CONCLUSIONS & FUTURE WORKS 

In this manuscript, a simple concept of compressive 
sampling is proposed and discussed. In the cases of noise-free 
signals, while the proposed algorithm can reach the Nyquist-
Landau lower sampling rate, it is still using a sample regular 
classic sampling circuit. Simulation results corroborate the 
performance of our algorithm. 

 

The following two problems, which are beyond the scope of 
the actual manuscript, should be addressed in our future works: 

 Can the proposed circuit be simplified to cope with 
a variable and relatively big number of frequency 
segments, i.e. a big number m in equation (1)? 

 Can the frequency segment estimation algorithms 
proposed in the literature, such as [15-16], be tuned 
and optimized to fit our schematic circuit and 
enhance the overall performances? 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 7: The shifted signal y(t) and its Fourier transform. 

 

 

 

 

 

 

 

 

 

 

(a) The modified signal z[n] sampled with 10KHz. 

 

 

 

 

 

 

 

 

 

 

 

(b) The modified signal z[n] sampled with 2KHz. 

Figure 8: The Lowpass Modified Signal z[n] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 9: The recovered signal       

 

Appendix A: Filtering by rectangular window 

Let h(t) denotes the impulse time response of a rectangular 
filtering window H(f) defined by the following equation: 
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In this case, one can evaluate h(t) using the following 
equations: 
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where         
      

 
. One should notice two special 

cases: 

 Real Low pass Filter: In this case,         
then 

                                                             (10) 

 Analytic Filter: Where a = 0 and b = fm then 

                                                                 (11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Recovering a sampled signa 

Let s(t) be a low pass signal with a maximum frequency fm 
and let ss(t) the sampled signal, i.e: 

 

                                                                (12) 

 

where Ts is the sampling period and δ(t) is the dirac 
impulse. Applying Fourier transform and Poisson's summation 
theorem, the previous equation becomes: 

 

           
 

  
               

 

  
                                   

          (13) 

Here * denotes the convolution product and    
 

  
     

is the sampling frequency. Equation (13) shows that the Fourier 
transform of the sampled signal is the moderated sum of shifted 
copies of S(f ). Therefore, it is clear to prove that S(f ) could be 
easily recovered from Ss(f ) using a simple LPF, see Fig. 10: 

 

                                                                                                                            

                                                                  (14) 

 

Here h(t) is the impulse response of a real low pass filter, 
see Appendix A. 

 

 

 

 



 

(a) Original signal and sampled signal 

 

 

(b) The spectrum of the original signal 

 

 

(c) The spectrum of the sampled signal 

 

 

(d) The recovered signal 

Figure 10: Fundamental steps in sampling and recovering of a lowpass   
                   signal 
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