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R�esum�e

Dans cet article, nous proposons une m�ethode g�eom�etri-

que simple pour la s�eparation aveugle de sources. Cette

m�ethode s'applique pour des sources de densit�e de proba-

bilit�e born�ee. Elle est fond�ee sur l'identi�cation des pentes

des ar�etes d'un parall�el�epip�ede. Nous proposons un al-

gorithme dans le cas de deux m�elanges de deux sources,

dont nous discutons les performances. Actuellement, nous

abordons l'extension de l'algorithme au cas de plus de deux

m�elanges et deux sources.

Abstract

In this paper, we present a geometrical method for solving

the problem of blind separation of sources. The method as-

sumes that sources have bounded probability density func-

tions pdf. It is based on estimation of edges of a paral-

lelepiped. We propose an algorithm for two mixtures of two

sources, performance of which are discussed. Currently, we

address the generalization of the method for more than two

mixtures and two sources.

1 Introduction

The problem of blind separation of sources is gener-

ally solved by using statistical criteria, minimization

of contrast function [2], [8], cancelation or minimiza-

tion of a cost functions [6], [5], [4], [3]. However, using

prior knowledge on the sources, new algorithms, ba-

sically simpler and more e�cient, may be derived [9],

[1], [7].

In this paper, assuming that sources have bounded

probability density functions pdf, we propose a method

based on geometrical properties of the mixtures.

2 Geometrical representation

Let us consider p observations, say ej(t) (1 � j � p),

assumed to be unknown linear instantaneous mixtures

of n unknown sources, say si(t) (1 � i � n):

ej(t) =
nX
i=1

mijsj(t): (1)

Source separation consists in estimating the un-

known sources, only using the mixtures. It is well

known that estimated sources are de�ned up to any

permutation and up to any scalar. Because of the last

indeterminacy, we may assume, without loss of gen-

erality, that issues of principal diagonal of the mixing

matrix M = (mii) equal 1: mij = 1.

For sake of simplicity, we restrict the following anal-

ysis to the case n = p = 2, but generalization to any n

and p is immediate:(
e1(t) = s1(t) + as2(t)

e2(t) = bs1(t) + s2(t):
(2)

Let us suppose that the sources are statistically inde-

pendent, and have bounded probability density func-

tions. Then, in the plane (e1; e2), the observation, at

any time t, is a point (e1(t); e2(t)) which belongs to a

parallelogram (see Fig. 1). Using (2), it is clear that

the parallelogram edges have slopes equal to to b and

1=a in the plane (e1; e2). Then, estimation of the slopes

gives directly estimation M̂.

For sources with semi-bounded pdf (for instance

si(t) 2 [0;1[), observations belong to an angular sec-

tor, edge slopes of which still correspond to b and 1=a

(see Fig. 2). For sources with various pdf, we plotted
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Figure 1: Source and mixture spaces for bounded sig-

nals.
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Figure 2: Source and mixture spaces for positive

sources.

5000 points (e1(t); e2(t)) in the plane (e1; e2). In Fig.

3, sources have both uniform distributions. In Fig. 4,

one has Gaussian distribution, the other has uniform

distribution. In Fig. 5, sources are both Gaussian.

Finally, in Fig. 6, we plotted mixtures for two deter-

ministic sine sources: sin(2�f0t), and sin(2�f1t + �).

The parallelogram of mixture distribution clearly ap-

pears for sources with bounded distributions, and the

method can only be applied in these cases.
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Figure 3: Mixture of two uniform signals.

3 Analytical study

First assume sources have distributions on positive

bounded intervals [0;Mi]. One of the vertices of the

mixture parallelogram is then located in (0; 0), and

the slope estimation may be very simple.

In fact, let us consider r(t) = e2(t)

e1(t)
. We may com-

pute the maximum and minimum value, say rmax and

rmin respectively. Clearly, if the number of samples is

large enough, rmax and rmin tend toward the slopes
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Figure 4: Mixture of Gaussian and uniform signals.
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Figure 5: Mixture of two Gaussian signals.

of the parallelogram, that is toward parameters of the

unknown mixing matrix.

3.1 Indeterminacies

According to the unknown values, a and b, of the mix-

ing matrix, maximum and minimum values of the ratio

r can satisfy: rmin = b̂ and rmax = 1=â, or rmin = 1=â

and rmax = b̂. The two solutions imply two di�erent

estimated matrices:

M̂1 =

 
1 â

b̂ 1

!
or M̂2 =

 
1 1=b̂

1=â 1

!
: (3)

If we compute the global matrix H = M̂�1M, we

get:

H1 =
1

1� âb̂

 
1� âb a� â

b� b̂ 1� ab̂

!
(4)

or

H2 =
1

1� âb̂

 
â(b� b̂) â(1� ab̂)

b̂(1� âb) b̂(a� â)

!
: (5)

Then, if â ! a and b̂ ! b, the two solutions only

di�er from a scale factor and a permutation.

In the following, we will propose a 2-step algorithm:

the �rst step consists in translating the parallelogram,

so that the origin corresponds to any corner, the sec-

ond step consists in estimating the slopes. First, we
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Figure 6: Mixture of two sine signals.

wonder if the solution di�ers according to the chosen

translation. Assume the sources satisfy: s1 2 [0;M1]

and s2 2 [0;M2]. If we choose the point D0 (see Fig.

1) as new origin, we may obtain two solutions taking

into account the slope indeterminacy. Now, assume,

the point B0 is the new origin. The slope estimation

provides the same values and the same indeterminacy,

but the new origin implies estimates sources are now

�s1(t) and �s2(t). Taking the other points (A
0 or C0)

as origin, we obtain similar results. Consequently, the

new origin may be any corner of the parallelogram.

3.2 Algorithm

We can resume the algorithm in 2 main successive steps

(for more information about this algorithm, see [10]).

� We �rst compute the new origin O
0 as the point

(e1(t); e2(t)) with the maximum norm (complex-

ity O(4N), where N is the sample number):

O
0 = (e1(t0); e2(t0)), with t0 = argmaxt(e

2

1
(t) +

e
2

2(t)).

� Then, we estimate slopes of the parallelogram. We

then deduce the estimated mixing matrix and its

inverse. Finally, estimated sources are obtained by

multiplying observations by the estimated inverse

of the mixing matrix (complexity 0(7N)):

Slope estimation

rmin = mint(
e2(t)�e2(t0)
e1(t)�e1(t0)

)

and rmax = maxt(
e2(t)�e2(t0)
e1(t)�e1(t0)

).

Source estimation

(ŝ1(t); ŝ2(t))
T = M̂�1((e1(t); e2(t))

T .

4 Experimentally result

4.1 Accuracy

With this method, necessity of source independence

does not appear directly. However, an accurate esti-

mation will only be possible if samples (e1(t); e2(t))

exist in the neighborhood of parallelogram edges. If

such points are scarce, the algorithm will need a lot of

samples. In particular, if the sources are not indepen-

dent, this situation may occur. Conversely, if we know

source pdf and assume source independence, we may

compute the probability of points in the neighborhood

of edges and deduce information on algorithm speed

and accuracy.

Consider the estimation of b: b̂ = mint(
e2(t)�e2(t0)
e1(t)�e1(t0)

),

and assume b̂ = b + �. Let us denote � the sec-

tor bounded by the 2 straight lines with slopes b and

b + � (see �g 7). It is easy to prove that: � =

arctan( �
1+b2+b�

). Using the inverse of the mixture ma-
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Figure 7: Security sector.

trix, we can calculate the straight line, say �, in the

source space, corresponding in the observation (mix-

tures) space to D: e2 = (b+ �)e1: 
s2

s1

!
=

1

1� ab

 
1 �a

�b 1

! 
e1

e2

!

=
1

1� ab

 
1 �a

�b 1

! 
e1

(b+ �)e1

!
:

The sector in source space is limited by the straight

line �, equation of which is s2 =
�

1�ab�a�s1.

Now, assuming sources have uniform pdf: s1 2 [0;M1]

and s2 2 [0;M2], the probability of samples in the

sector S is:

P =

Z M1

0

Z �s1

1�ab�a�

0

1

M1M2

ds2ds1

=
�M1

2M2(1� ab� �a)
: (6)

Practically, if the total sample numberN , and the sam-

ple number Ns in sector S, are large enough, the ratio
NS

N
tends toward the probability P . Then, we may

deduce that the number of samples in sector S must

satisfy: NS = �M1N
2M2(1�ab�a�)

>> 1. The minimum sam-

ple number N can then be deduced from this relation.

Note that the accuracy on â and b̂ directly corrupts

separation performance. With â = a+�a and b̂ = b+�b,

and assuming sources have the same power, it is easy

to compute the residual crosstalk: Ci =
�i

1�ab�a�b�b�a
,
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with i 2 fa; bg. Then, from (6), we deduce N = Ns

2

p
C
.

Taking Ns � 10, we �nally obtain N � 5p
C
: For

C = 0:01 (- 20 dB), we will choose N � 50.

4.2 Algorithm performance

With 1000 samples and for two sources and two sen-

sors, we obtain a crosstalk of about -20 dB to -24 dB.

In the case of more sources (three sources), the same

algorithm can be applied for particular mixing matri-

ces with similar performance. However, in the general

case, the algorithm consisting in estimating slopes from

the ratio r = ei
ej

does not work any more. It is nec-

essary to estimate the planes (or hyperplanes in more

general case) which bound the parallelepiped in the

mixture space.

Finally, the algorithm is very sensitive to additive noise

in the mixtures. In fact, the additive noise implies

noise around parallelogram edges, and consequently

poor performance in slope estimation.

5 Conclusion

In this paper, we propose a source separation algo-

rithm, based on geometrical properties:

� It is very simple, and does not need computation

of any order statistics.

� The convergence is fast, and depends only on the

probability of points close to the parallelogram (or

parallelepiped) edges.

The algorithm su�ers from a few limitations:

� Sources must have bounded pdf.

� It is sensitive to noise.

� It cannot be applied directly for more than two

sources, although the geometrical idea still holds.

In further works, we would like to apply image process-

ing techniques for noisy mixtures and more sophisti-

cated geometrical methods for more than two sources.
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