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Abstract—The methods of dynamic access to spectrum
developed in Cognitive Radio require efficient and robust
spectrum detectors. Most of these detectors suffer from
four main limits: the computational cost required for
the detection procedure; the need of prior knowledge of
Primary User’s (PU) signal features; the poor performances
obtained in low SNR (Signal to Noise Ratio) environment;
finding an optimal detection threshold is a crucial issue.
In this paper, we propose a blind detection method based
on the cyclostationary features of communication signals
to overcome the four limits of spectrum sensors. In order
to reduce the computational cost, the FFT Accumulation
Method has been adjusted to estimate the cyclic spectrum
of the intercepted signal. Then, the spectrum coherence
principle is used to catch the periodicity hidden in the
cyclic autocorrelation function of this signal. The hidden
periodicity is revealed by the crest factor of the cyclic
domain profile. The detection of PU’s signal is achieved by
comparing the embedded periodicity level with a predeter-
mined threshold related to the crest factor. This threshold
varies randomly dependent on the SNR. Then, we have
modelized the distribution law of the threshold in order
to select the optimal value. Using the crest factor of the
cyclic domain profile as a detection criterion has permitted
to develop a spectrum sensor which is able to work in a
blind context. Simulation results corroborate the efficiency
and robustness of the proposed detector compared with the
classical Energy Detector.

Keywords—Spectrum Sensing, Cyclostaionarity, FFT
Acumulation Method, Cyclic Spectrum, Spectrum Coher-
ence, Cognitive Radio.

I. INTRODUCTION

The increasing demand for very high data-rate wireless
communication systems and the scarcity of spectrum
bandwidths require the development of new technologies
to manage wisely the spectrum sharing. Cognitive radio
introduced by Mitola [1] addresses the problem of the
spectrum lack. It allows two categories of users to share
the same bandwidth. The first one, is the Primary User
“PU” who holds the license of a bandwidth; and the
second one is denoted by Secondary Users “SU” who
are all other opportunist transmitters. The main diffi-
culty for cognitive radio is the detection of unoccupied
spectral bands. Many methods of spectrum sensing such
as Energy Detection (ED), Waveform Detection (WFD),
Cyclostationary Features Detection (CFD) have been
recently developed [2]. The ED method determines the
unoccupied spectrum by comparing the estimated power

of the received signal with a predetermined threshold.
This method does not perform well under low signal-
to-noise ratio (SNR) conditions [3]. The most reliable
detection method, WFD performs a correlation between
the waveforms of received and reference signals. WFD
is very efficient [4] but it requires an accurate knowledge
on PU’s signal. In real scenario, SU has no prior infor-
mation on PU’s signal. The CFD initially proposed by
Gardner [5,6] uses the fact that communication signals
can be modelized as cyclostationary signals [7]. The
cyclostationary processes are random processes which
have periodical statistics [6]. Cyclostationarity can be
caused by the modulation or the coding stages, but it
may intentionally be introduced in order to aid in the
channel estimation or the synchronization process [3].
The CFD can be used in a blind context [8,9]. As no prior
information about the PU is needed, the main strategy is
based on developing methods to extract cyclostationary
features [10,11]. In this paper, we propose a blind
detection method based on the cyclostationary features
of communication signals to detect the presence of PU’s
signal in a bandwidth. Our approach can be divided
into two major parts. At first, we have adjusted the
FFT Accumulation Method (FAM) to estimate the cyclic
spectrum of intercepted signal. Then, we have performed
spectrum coherence principle to catch the periodicity
hidden in the autocorrelation function of this signal. We
have achieved the detection of PU’s signal by compar-
ing the periodicity level embedded to a predetermined
threshold. The value of this threshold varies randomly
dependent on the SNR. Therefore, we modelized the
threshold variation as a random variable and the optimal
value of the threshold is chosen according to a fixed
value of Probabilty of False Alarm. Simulation results
through Receiver Operating Characteristic (ROC) curves
corroborate the efficiency and robustness of the proposed
algorithm compared with the classical blind detection
method. The rest of this paper is organized in five
sections. In section II, the concept of cyclostationarity
is briefly reviewed. Section III presents FAM algorithm
used to estimate cyclic spectrum. The principle of the
detector is presented in section IV. The section V deals
with the evaluation of the proposed detector performance.
The last section concerns the conclusion and perspectives
for future work.



II. CYCLOSTATIONARY SPECTRUM ANALYSIS

The hidden cyclic frequencies in cyclostationary signal
can be revealed by the Cyclic Autocorrelation Function
(CAF). The equivalent of CAF in frequency domain
is the cyclic spectrum (CS) [12]. The CAF and the
CS are generally used for detecting the presence of a
cyclostationary signal [13].

A. Mathematical Background

A zero-mean x(t) is called a second order cyclosta-
tionary signal if its time varying autocorrelation function
Rx(t, τ),

Rx(t, τ) = E
{
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2

)
x∗
(
t− τ

2

)}
(1)

is periodic in time t for any parameter τ ; Therefore,
it can be decomposed in Fourier series:

Rx(t, τ) =

M∑
k=1

Rkα0
x (τ)ej2πkα0t (2)

where the fundamental cyclic frequency is denoted by
α0 = 1/T0 and M represents the rank of the last
harmonic. T0 is the hidden period [14]. The Fourier
coefficients Rk.α0

x (τ) are called the cyclic autocorrelation
function (CAF) [15]:

Rkα0
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Rx(t, τ)e−j2πkα0tdt (3)

The above coefficients can be as well estimated by the
following equation [14]:

Rkα0
x (τ) = lim

T→∞
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Rx(t, τ)e−j2πkα0tdt (4)

where T is the time duration used to evaluate the
CAF. The relation (3) is used with a prior knowledge
on the hidden periodicity [14]. Let α = k.α0 be the
cyclic frequency, the Fourier Transform of CAF, i.e. the
CS [15], becomes:

Sαx (ν) =

∫ +∞

−∞
Rαx (τ)e−j2πντdτ (5)

.
According to [16] and [17], Rαx (τ) can be approxi-

mated as follows:
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Using e−jπα( τ2−

τ
2 ) = 1, equation (6) can be rewritten

as follows:

Rαx (τ) = lim
T→∞

1

T

∫ −T2
−T2

x
(
t+

τ

2

)
e−j2π

α
2 (t+ τ

2 )×

x∗
(
t− τ

2

)
e−jπ

α
2 (t− τ2 )dt (7)

Let us denote y(τ) = x(t+ τ
2 )e−j2π

α
2 (t+ τ

2 ); by applying
Fourier Transform (FT) on (7), we obtain CS, which can
be viewed as a spectral correlation function [18]:

Sαx (ν) = TF {Rαx (τ)} (8)

= lim
T→∞
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where XT (ν) is the Fourier transform of the product
between our signal x(t) and rectangular window of width
T :

XT (ν) =

∫ T
2

−T2
x(t)e−j2πνtdt (11)

By definition, 1
TXT

(
ν + α

2

)
X∗T

(
ν − α

2

)
is the cyclic

periodogram [19]–[21].

B. Cyclic Spectrum estimation

The CS can be estimated by time or frequency smooth-
ing algorithms [22,23]. According to [18,19,22], the time
smoothing algorithms are more efficient and reliable than
frequency smoothing. Let ∆t be the observation time,
an estimation of the CS can be obtained by the time-
smoothed cyclic periodogram given by:

Sαx (ν) ≈ SαxTw (t, ν)∆t =
1

∆t
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2
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2

SxTw (u, ν)du

(12)
where
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with Tw is the window width of short-time FFT, and

XTw(t, ν) =

∫ t+Tw
2

t−Tw2
x(u)e−j2πνudu (14)

is the short-time Fourier transform (STFT). The spec-
tral components generated by STFT have a resolution
∆f = 1

Tw
. For a reliable estimation of CS, the Grenan-

der’s uncertainty condition should be respected [18]:

∆t.∆f � 1 (15)

According to [19], the most used time smoothing
algorithms are the FFT Accumulation Method (FAM)
and the Strip Spectral Correlation Algorithm (SSCA).
As FFT Accumulation Method is more computationally
efficient than SSCA [18,22], we have used it in our work.

III. FAM ALGORITHM

Let x[n] be the discrete time version of a signal x(t),
the estimation of CS becomes:

Sαx (n, ν) =
1

N
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where N is the total number of discrete samples within
the observation time ∆t, and NP the number of points
within the discrete short-time FFT. XTw denotes the
Discrete Fourier Transform of x[n]:

XTw(n, ν) =

NP
2 −1∑

k=−NP2

w(k)x(n−k)e−j2πν(n−k)Ts (17)

with w(k), the data tapering window of width Tw =
NPTs seconds. Ts is the sampling period of x(t).
XTw(n, ν+α

2 ) is called the complex demodulate of x(n).
FAM is derived from equation (16) and it divides the en-
tire bifrequency plane (ν, α) into small areas to calculate
the CS of each area. As showed in [3] and [20], the FAM
algorithm works as follows:

1) The input sample sequence x[n] of length N is
divided into P blocks, where each block contains
NP samples. L data samples are skipped between
two successive blocks of NP samples. The value
of L is fixed to be equal to NP /4, which is
a good trade-off among the computational effi-
ciency, minimizing the cycle leakage and the cycle
aliasing. The value of NP and P are determined
respectively according to the desired resolution in
frequency ∆ν and resolution in cyclic frequency
∆α = 1

∆t and sampling frequency Fs by:

NP = 2blog2(
Fs
∆f−1)+1c (18)

P = 2blog2(
Fs
L.∆α−1)+1c (19)

where bac denotes the integer part of a.
2) A Hamming window w(n) is applied across each

block. We have chosen a Hamming window w(n)
because of its low skirts and low sidelobes that
allows to reduce the cycle leakage [19];

3) NP − points FFT of each block is computed
to obtain the complex envelope XTw(n, ν). The
result is multiplyed by ej2π(α2 )nTs , to downshift
XTw(n, ν) in frequency: XTw(n, ν + α

2 );
4) Complex conjugates of downshifted XTw(n, ν+α

2 )
are computed;

5) CS is estimated by multiplying XTw(n, ν+ α
2 ) and

its conjugate;
6) The smoothing operation of the product of se-

quences is executed by means of P−points FFT .
Fig. 1 illustrates the different stages of FAM algorithm.

The reliable CS estimation is a great and difficult stage
in cyclostationary signal detection.

IV. DETECTION MODEL

Let x(t) be the received signal, s(t) stands for the
communication signal and n(t) is the Additive White
Gaussian Noise (AWGN).

x(t) = θ.s(t) + n(t) (20)

Fig. 1: Block diagram of FAM algorithm [18]

Let us consider the following hypotheses H0 and H1:
• H0 : absence of communication signal; θ = 0
• H1 : presence of communication signal; θ = 1

The main idea of signal detection consists in measur-
ing the periodicity contained in the CAF of x(t). Indeed,
communication signals are second order cyclostationary
processes [24]. However, AWGN is assumed to be a
stationary signal. In this paper, we establish a detection
threshold based on the spectral autocoherence function
Cαx (ν):

Cαx (ν) =
Sαx (ν)√

S0
x(ν + α

2 ).S0
x(ν − α

2 )
(21)

We should note that |Cαx (ν)| ≤ 1 [14,24,25]. From
Cαx (ν), we define the Cyclic Domain Profile I(α)
which contains only the peak values of |Cαx (ν)|, as
follows [13,26]:

I(α) = max
ν
|Cαx (ν)| (22)

Using the definition of I(α), the crest factor Fc, is
defined as follows [27]:

Fc =
maxα {I(α)}√
1
k

∑αk
α=α1

[I(α)]
2

(23)

Where k is the length of vector I(α). Fc characterizes
the level of periodicity contained in the CAF of a signal.
Hereinafter, the crest factor Fc is used as the detection
criterion. At first, Fc is evaluated under H0 (there is just
noise in the channel). This value is denoted CTH . During
spectrum sensing period, the detector evaluates the factor
Fc and applies the following criterion:

Fc
H1

≷
H0

CTH (24)

By performing several Monte Carlo simulations, we
noticed that CTH can be modelized by a random variable
depending on SNR. The main difficulty at this stage is to
determine an optimal value of CTH in order to minimize
detection errors according to Neymann-Pearson detection
theory [28]. The Probability Density Function (PDF) of
CTH can be approximated using the following steps:



1) Calculate different values of CTH when the PU is
absent.

2) Estimate the PDF of CTH variation by the empir-
ical histogram.

3) Select analytical PDF for this CTH variation
and validate the selection by using Kolmogorov-
Smirnov’s test (see Fig. 3).

Fig. 2 shows the evolution of crest factor Fc with SNR
variation from −30 dB to 30 dB; from a context where
there is no signal to a context where there is no noise.

Fig. 2: Evolution of crest factor Fc from SNR= −30 dB to SNR=
30 dB.

By determining the threshold CTH at the absence
of communication signal, the corresponding histogram
illustrated in Fig. 3 can be approximated reliably by a
Generalized Extrem Value (GEV) distribution defined as
follows [29]:

f(x;µ, σ, ξ) =
1

σ

[
1 + ξ

(
x− µ
σ

)]− 1
ξ−1

×

exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

}
(25)

where ξ is the shape parameter, σ the scale param-
eter and µ the location parameter. To estimate these
parameters, we have used the minimizing quadratic error
principle. The following values have been obtained:
ξ = −0.027, σ = 0.295 and µ = 8.20.

Fig. 3: Approximation of the PDF of CTH by GEV distribution
(equation (25))

Let us define the conditional PDF of the crest factor
Fc:
• fFc|H0

(fc) is the conditional PDF of Fc under H0.
• fFc|H1

(fc) is the conditional PDF of Fc under H1.
Simulations show that the conditional PDF fFc|H0

(fc)
and fFc|H1

(fc) are overlapped as shown in Fig. 4.

Fig. 4: Histogram of the crest factor for a SNR from -30 dB to 30
dB. Detection errors are from the overlapping region between fFc|H0
and fFc|H1

From Neymann-Pearson detection theory [28], the
detection probability Pd can be defined by:

Pd = P (Fc > CTH |H1) =

∫ +∞

CTH

fFc|H1
(u)du (26)

and the Probability of false alarm Pfa becomes:

Pfa = P (Fc > CTH |H0) =

∫ +∞

CTH

fFc|H0
(u)du (27)

To evaluate the performance of the proposed detector,
we have generate the Receiver Operational Character-
istic (ROC) curves using several Monte-Carlo simula-
tions [28].

V. SIMULATIONS RESULTS

To analyse the performance of the proposed algorithm,
we applied the equation (24) to different signals: 4-
QAM, 16-QAM, BPSK, QPSK and 4-ASK. In this paper,
we give the results about 16-QAM and BPSK signals.
Let us consider the intercepted signal characteristics as
follows: data frequency Fd = 1024Hz, carrier frequency
Fc = 2048 Hz, sampling frequency Fs = 8192 Hz. The
parameters of the detector are the observation duration
of intercepted signal ∆t = 125 ms and the duration
of sliding window Tw = 19.53 ms. Consequently, the
detector has a frequency resolution ∆ν = 1

Tw
= 512 Hz

and a cyclic frequency resolution ∆α = 1
∆t = 8 Hz.

The Grenander’s uncertainty condition ∆t.∆ν � 1
is respected for a reliable CS estimation. The choice
of ∆α = 8 Hz implies that the number of samples
contained in the intercepted signal is N = Fs

∆α = 1024
samples. Equations (26) and (27) show that when the
value of CTH increases, Pfa and Pd decrease. By using
the inverse of complementary cumulative distribution
function, we determine the corresponding CTH value for



a fixed value of Pfa. The Table I gives some CTH values
based on the Pfa.

Pfa 0.01 0.02 0.05 0.1 0.2 0.3
CTH 9.48 9.29 9.04 8.88 8.65 8.50

TABLE I: Correspondance values of CTH and Pfa

The Pd curves on Fig.5 based on SNR values show
that the proposed method is able to detect the presence
of communication signal buried in noise with good
performances. For example, concerning 16-QAM signal,
our algorithm is able to detect the signal with Pd ≥ 0.9
in a Gaussian channel where SNR = −10 dB. The fixed
value of Pfa in this case is Pfa = 0.1.
When Pfa is fixed to 0.01, the proposed algorithm is able
to detect the PU’s signal with Pd ≥ 0.93 in a Gaussian
channel with SNR = −8 dB. In addition, from the Fig.5,
we notice that for SNR ≥ −7 dB, the PU’s signal can
be detected easily with Pfa ≤ 0.1

Fig. 5: Evolution of probability of detection following the SNR values
for a fixed Pfa.The signal used is a 16-QAM signal.

Afterwards, we have generated the ROC curves for
different SNR values to evaluate the robustness of our
detector (see Fig. 6).These ROC curves corroborate the
previous results. They allow us to understand the relation
between the Pd and the Pfa evolution for different values
of the SNR.

Fig. 6: Evaluation of detector robustness on 16-QAM signal by ROC
Curves of Pd versus Pfa for fixed SNR.

The second kind of signal used in our simulations is
a BPSK signal. Here, the detector is able to detect this
signal with Pd = 0.96 and Pfa = 0.02 for SNR = −8
dB. With SNR = −10 dB, we obtain Pd = 0.90 versus
Pfa = 0.1. When SNR is less than −10 dB, it is difficult
for the CSD to have good performances in PU’s signal
detection (see Fig. 7).

Fig. 7: Evaluation of detector robustness on BPSK signal by ROC
Curves of Pd versus Pfa for fixed SNR.

One can notice that our proposed CSD acts in blind
context. We have confronted his robustness to the clas-
sical energy detection which acts in blind context too.
We used the same simulation parameters. The number of
samples contained in the intercepted signal is N = 1024.
The signal used is a 16-QAM signal. For different SNR
values (from -16dB to 3 dB), we evaluate the probability
of detection of CSD and ED for Pfa = 0.1. The
simulation results are presented on Fig. 8. We notice
that for Pfa = 0.1, the CSD is able to detection the
presence of PU’s signal with Pd = 0.9 in a channel
where SNR = −10 dB. Whereas, the ED can detect the
same signal with a Pd = 0.9 only when SNR = −3 dB.
The ROC curves of Pd versus SNR on Fig.8 prove that
the CSD is able to detect the PU’s signal in a very low
SNR environment contrary to classical ED.

Fig. 8: ROC curves of Pd versus Pfa for Pfa = 0.1: Comparaison
of CSD to classical ED.



VI. CONCLUSION

PU’s signal detection in a low SNR is crucial to cog-
nitive radio. In this paper, we propose an efficient blind
detection method based on the cyclostationary features
of communication signals to detect the presence of PU’s
signal in a bandwidth. This proposed detector overcomes
four limits of most of spectrum sensors. After estimat-
ing cyclic spectrum by FFT Accumulation Method, the
crest factor of cyclic domain profile is calculated and
compared with a predetermined threshold to make a
decision about the presence or not of PU’s signal. The
crest factor is the feature which shows the periodicity
level embedded in the cyclic autocorrelation function of
intercepted signal. The efficiency of our cyclostationary
features detector for a very low SNR in Gaussian channel
is emphasized through ROC curves over the classical
energy detector. During our simulations, we have noticed
that cyclic spectrum is a sparse matrix. In future works,
we will apply the sparsity methods to extract only
essential features of cyclic spectrum. It will allow us to
further reduce the computational cost and volume of data
used in cyclostationary features detection procedure. In
addition, we will study the behaviour of our proposed
cyclostationary features detector in various transmission
channels such as Rayleigh channel.
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