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Abstract—In this paper, Principal Component Analysis (PCA)
techniques are introduced in the context of Cognitive Radio to
enhance the Spectrum Sensing performance. PCA step increases
the SNR of the Primary User’s signal and, consequently, enhances
the Spectrum Sensing performance. We applied PCA as a
combination scheme of a multi-antenna Cognitive Radio system.
Analytic results will be presented to show the effectiveness of
this technique by deriving the new SNR obtained after applying
PCA, which can be considered a pre-processing step for a classical
Spectrum Sensing algorithm. The effect of PCA is examined with
well known detectors in Spectrum Sensing, where the proposed
technique shows its efficiency. The performance of the proposed
technique is corroborated through many simulations.

Keywords—Principal Component Analysis, Multi-antennas sys-
tem, Spectrum Sensing.

I. INTRODUCTION

The Cognitive Radio (CR) was proposed to address the
scarcity in the available frequency bandwidths [1]by sharing
spectrum among users, Primary User (PU) and Secondary
User (PU). PU has the spectrum license. When PU is idle, a
SU can access the channel. However, if PU becomes again
active, then SU should immediately vacate the channel to
avoid any interference to PU.

The monitoring of the PU activities becomes a challenge
for CR. To determine the PU status (active or idle), CR
should perform a Spectrum Sensing algorithm to get this
information.

In the literature, many spectrum sensing techniques can
be identified [5]: Energy Detection (ED), Autocorrelation
Detection (ACD), Cyclo-Stationary Detection (CSD) etc.
ED method is very simple method and it is still the most
widely used [5], [3]. ED measures the energy of the received
signal compares it to a predefined threshold depending on the
noise variance.
ACD exploits the oversampling aspect of the PU signal
received at the SU receiving antenna [4]. The autocorrelation
of the PU signal for some non-zero lag leads to non-zero
value whereas this autocorrelation vanishes for a white noise.
Based on the Cyclic-Autocorrelation Function (CAF), CSD

tests the cyclic statistics of the received signal at a given
cyclic frequency [5]. Since telecommunication signals are
cyclostationary, CAF detect the presence of a cyclostationary
signal in a noisy channel.

To enhance the performance of Spectrum Sensing, systems
of multi-antennas with hard/soft combining schemes have
been proposed [6], [5]. In Hard Combining Scheme (HCS),
a decision about the PU presence is made on each antenna.
Later on, a fusion center combines all issued decisions
using logic rules such as Or, And or a Majority rule [6],
[5]. In Soft Combining Scheme (SCS), the fusion center
combines linearly the test statistics calculated at the receiving
antennas to obtain a global test statistic which is compared
to a predefined threshold to make the decision on the PU status.

The Principal Component Analysis (PCA) has been
recently used in Spectrum Sensing. PCA techniques were
used to enhance the autocorrelation detector [8], [9]. In such
situation, Robust PCA [7] technique is used to split the
covariance matrix into a diagonal matrix (corresponds to the
white noise), and a low-rank matrix (corresponds to the PU
oversampled signal).

Our work emphasizes the use of PCA to enhance the
SNR of the PU signal. In this manuscript, we consider a SU
equipped with m receiving antennas. Using the covariance ma-
trix of the m observation, PCA can be applied for generating
m Principal Components (PCs). When PU exists, only one PC
contains the noisy PU signal with enhanced SNR, while the
other PCs are linear combinations of the noise. For that, The
SU should be able to select the appropriate PC to perform the
Spectrum Sensing. In this paper, we derive the output signals
of the PCA system, and we derive the new SNR obtained
after applying PCA. Furthermore, we set a criterion based on
which the SU should find the appropriate PCA output that is
capable to examine the channel status. Note that our proposed
technique is not a Spectrum Sensing algorithm, but it is an
efficient pre-processing step.



II. SYSTEM MODEL

The problem formulation on the presence/absence of the
PU can be presented in a classic Bayesian detection problem
as follows:

Hη : xi = ηhis + wi (1)

Where η ∈ {0; 1}. H0 stands for the case where PU is
absent, whereas under H1 PU is transmitting. xi is 1 × N
vector representing the observation at the ith SU receiving
antenna, N stands for the total number of received samples,
s is 1 × N vector containing the PU user signal. The 1 × N
vector wi represents zero mean Additive White Gaussian
Noise (AWGN) with a variance σ2

wi
and a covariance matrix

E[wiwj ] = σ2
wδij , where δij the the Kronecker function, and

hi is the channel gain between the PU base station and the
ith SU receiving antenna.

III. PCA USING m ANTENNAS

In this section, we present the PCA technique on a system
of m antennas, m > 1. PCs are found using the covariance
matrix of the observed signal at m antennas [10], [11].
Let X be the matrix collecting the observations on m antennas:

X =
[
xT1 xT2 ... xTm

]T
(2)

In this case X becomes m × N matrix and the covariance
matrix C becomes m×m matrix as follows:

C =


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w

 (3)

η2 is replaced in (3) by η for simplicity, since η2 = η.
The covariance matrix C can be estimated as follows:

Ĉ =
1

N

N∑
n=1

XXH (4)

By using the independence assumption between the PU
signal and the noise, the matrix C can be written as the sum
of two covariance matrices, Cs and Cw.

C = Cs + Cw (5)

Where Cs is the covariance matrix of the PU signal received
on m antennas. Cs becomes null under H0. Under H1, Cs
is a matrix of rank one. Cw is the covariance of the noise
components, which is diagonal: Cw = σ2

wIn. Since Cw is
diagonal, the eigenvalues of C are the sum of those of Cs and
Cw:

λ(C) = λ(Cs) + λ(Cw) (6)

Being diagonal, the eigenvalues of Cw, λwi , 1 ≤ i ≤ m are
equal to σ2

w, while the eigenvalues of Cs, λsi , 1 ≤ i ≤ m,
should be zeros except one is equal to the trace of Cs, tr(Cs).

tr(Cs) =

m∑
i=1

|hi|2σ2
s (7)

This is because Cs is of rank one. Consequently, the eigenval-
ues of C, λi, 1 ≤ i ≤ m, become:

λ1 = λ2 = ... = λm−1 = σ2
w (8)

λm =

m∑
i=1

|hi|2σ2
s + σ2

w (9)

The eigenvectors can be found based on the eigenvalues
by solving the following equations:

(C − λiI2)vi = 0 (10)

where v1 is the ith eigenvector corresponding to the ith eigen-
value λi and I2 is the identity matrix. Once the eigenvectors
are found, the PCs can be obtained as follows:

pi = vHi X (11)

A. Finding the Principal Components under H1 and H0

Under H1, PCA yields m PCs, among them, only one
component contains a filtered PU signal. This component, pm,
corresponds to the highest eigenvalue λm =

∑m
i=1 |hi|2σ2

s +
σ2
w where

∑m
i=1 |hi|2σ2

s and σ2
w stand for the power of the

PU and the power of the noise component signal existing in
pm respectively [10], [11]. The other m − 1 components are
a mixture of the noises observed at the m antennas. The last
discussion shows the impact of PCA on the SNR. The new
SNR, γpca, which is obtained after applying the PCA technique
is presented as follows:

γpca =

∑m
i=1 |hi|2σ2

s

σ2
w

(12)

Asssuming that |hi|2 = |hj |2, ∀ 1 ≤ i, j ≤ m, the new SNR
becomes linearly proportional to the number of used antennas
in PCA.

Under H0 (i.e. η = 0 ), (3) yields a diagonal matrix:

C0 = Cw (13)

Since C0 = σ2
wIm, the eignevalues of C0 are given as follows:

λ1 = λ2 = ... = λm = σ2
w (14)

Since C0 is a diagonal matrix, then the m×m identity matrix,
Im, can be the matrix collecting the eigenvectors, vi, 1 ≤ i ≤
m.

[v1 v2 . . . vm] =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (15)

According to (11), the PCs under H0 are nothing but the noise
components. However, any rotation of the set of eigenvectors
do not affect the PCs’ statistical properties under H0, since the
m noise components at the m SU receiving antennas are white
Gaussian and independent. Consequently, pi ∀ 1 ≤ i ≤ m,
becomes a linear combination of wi, 1 ≤ i ≤ m, and then pi
remains white Gaussian noise.



IV. SPECTRUM SENSING USING PCA

PCA generates up to m components (the same number of
observations), the detector has to choose the validate one to
perform the Spectrum Sensing. As discussed in the section
above, under H0, pi0(n) are equivalent since wi are AWGN
having the same variance. Unlike H0, H1 leads to non-
equivalent PCs. pi1, 1 ≤ i ≤ m − 1 are nothing but
a combination of the noise components, whereas pm1 is a
combination of the PU signal and the noise. Therefore, by
applying a test statistic on pm1 , the SU is able to diagnose the
channel status. Consequently, the SU should be able to choose
the good PCA output that leads to an efficient decision on the
PU status.
Since pi1 and pm1 corresponds to two different eigenvalues
∀ i 6= m, where λi = σ2

w, 1 ≤ i ≤ m − 1 and λm =∑m
i=1 |hi|2σ2

s + σ2
w, the SU can choose the validate output,

pval, as the PC that correspond to the maximal eigenvalue.

pval = pk
subject to λk = max{λi}, i = 1, ..,m. (16)

Where {pk} is the set of the output signal after applying
PCA. Note that this test does not affect the performance of the
Spectrum Sensing under H0 since the m PCs are equivalent.
Once the SU chooses the appropriate PC, then a test statistic,
T , is calculated by applying a Spectrum Sensing method and
compared to a threshold, ξ to make a decision on the PU status.
Motivated by the discussion above, the new channel hypothesis
can be presented as follows:

{
H0 : pval = w
H1 : pval = y + r

(17)

Where w corresponds to the noise component which should
be obtained under H0, y and r stands for the PU signal and
the noise existing in pval under H1 respectively.
The following algorithm summarizes the steps followed to
make a decision on the channel using the PCA.

Algorithm 1 Spectrum Sensing using PCA
1. Collect the received samples from m antennas
2. Calculate the covariance matrix C according to (4)
3. Calculate the eigenvalues of C
4. Find the maximum eigenvalue λm
5. Calculate the Eigenvector, vm, corresponding to λm
6. Find pval, the PC corresponding to vm
7. Apply a certain Spectrum Sensing method on pval to
obtain a test statistic
8. Compare the test statistic to a threshold to make a decision
on the channel status
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Fig. 1. The PCA technique effect on ROC curve

V. NUMERICAL RESULTS

In this section, we show by simulation the efficiency of
the PCA technique. The PU signal is assumed to be 16-QAM
baseband modulated signal with a symbol duration of 8µs, and
a sampling frequency of 1 MHz.
Two types of simulations will be performed, the first one deals
with a perfect knowledge of the covariance matrix, and in the
second one the covariance matrix is estimated according to (4).

a) Perfect Knowledge of Covariance matrix
: To show the effect of PCA on the SNR of the PU signal and
to show the the accurate analytic relation of (12), we assume
that the Covariance Matrix, C, is perfectly known. Figure (1)
shows the Receiver Operating Characteristic (ROC) curve for
a number of receiving antennas m = 2. As shown in figure
(1), at γ = −12 dB we obtain the same performance as that
when γ = −9 dB. Therefore a gain of 3 dB is achieved (The
SNR is doubled).

b) Estimated Covariance matrix: In this section
we consider the covariance matrix estimation effect on
the Spectrum Sensing process, and the performance of
the proposed technique comparing to other mutli-antenna
techniques. In real applications, it is hard to know perfectly
the covariance matrix. For that, we can estimate C according
to (4). Figure (2), shows the ROC curve of ED when
C is estimated using (4). The channel is assumed to be
Gaussian and the the number of samples is fixed to N = 500
samples. Figure (2) shows the ROC curve of ED with
PCA when C is perfectly known and when C is estimated.
Furthermore, ED with SCS and HCS is presented as well as
ED which is performed at single antenna. It is shown that the
estimation process slightly affects the detection performance.
Nevertheless, PCA techniques leads ED to be more efficient
than the situations where SCS and HCS are used.

To show the efficiency of the PCA on various detectors.
Widely used methods sush as ED, CSD and ACD are con-
sidered to perform the Spectrum Sensing. The proposed PCA
technique is compared with SCS under various situations in
order to show its efficiency. For the upcoming simulations, we
assume that the channel between the PU base station and the
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Fig. 2. ROC curve obtained by using the Covariance matrix according to (4)

ith receiving SU antenna is Raleigh flat-fading and the number
of samples is N = 1000 samples.
For ED, ACD and CSD, we evaluate the three corresponding
test statistics, Ted, Tacd and Tcsd respectively as follows:

Ted =
1

N
pvalp

H
val (18)

Tacd =
1

N

N∑
n=1

pval(n)pval(n− τ)∗ (19)

Tcsd =
1

N2

∣∣∣∣∣
N∑
n=1

pval(n)pval(n− τ)∗e−j2παn
∣∣∣∣∣
2

(20)

Where pval(n) is the nth component in pval, τ is the lag value
and it should be non-zero for ACD [4], and α is a non-zero
cyclic frequency of s.

Figure (3) shows the ROC curves for ED, ACD and CSD
using Ĉ for a SNR of -10 dB and m = 4 antennas. As shown
in figure (3), PCA enhances the performance of ED, ACD and
CSD more than SCS. For pfa = 0.1, CSD reaches pd = 0.5
when SCS is used, while the probability of detection of this
detector becomes more than 0.7 when PCA is used.

Figure (4) shows the variation of pd with respect to
the number of SU receiving antennas, for pfa = 0.1 and
SNR=-12 dB. For the different used detectors, PCA technique
outperforms slightly SCS. pd of ACD exceeds 0.9 at m = 4
antennas with PCA, while it reaches this values for m = 5
antennas with SCS. Similarly, for ED and CSD, where the
performance with PCA becomes more efficient than that with
SCS.

VI. CONCLUSION

In this paper, Principal Component Analysis (PCA) is
proposed to enhance Spectrum Sensing performance. With
PCA, the Spectrum Sensing process is divided into two steps:
in the first one, PCA is applied on the collected observations on
mutli-antenna. PCA yields a filtered copy of the PU signal with
an improved SNR which increases linearly with the number of
observations. In the second step, a Spectrum Sensing method is
applied on the filtered copy found by PCA. Simulation results
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Fig. 3. ROC curve of ED, ACD and CSD using PCA and SCS
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Fig. 4. The variation of pd in terms of the number of SU receiving antennas
under SNR=-12 dB and pfa = 0.1 using PCA and SCS

show the efficiency of our method which ameliorates the
performance of various Spectrum Sensing method considered
in this manuscript.
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