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Abstract "For the last 10 years, source separation has
raised an increasing interest, partly because it has been
discovered that space-time approaches will play an es-
sential role in future radio communications" Lathauwer
and Comon [1].

In the case of instantaneous mixture (memoryless
mixture or channel), many algorithms are proposed to
solve the blind separation problem. In general case
(where no special assumption is assumed), the high
order statistics (i.e fourth order) are used [2]. By
adding special assumptions, algorithms and criteria can
be simpli�ed [3].

In this paper, we discuss and shortly present how the
separation of non stationary signal can be done using
only second order statistic.
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1 Discussion

Recently in the signal processing �eld, a new and im-

portant problem has been introduced by H�erault et
al. [4, 5]. That problem involves retrieving unknown

sources from the observation of unknown mixtures of

these sources.

Generally, the sources and the channel are assumed

unknown and the authors assume two fundamental as-

sumptions [3]:

� H1: The sources are assumed to be unknown and

statistically independent from each other.

� H2: The channel model is known. So, the mixture

can be linear mixture (i.e. instantaneous mixture

or "memoryless channel" and convolutive mixture)

or non linear mixture [6].

Generally, the number of sensors q is assumed to be
equal or great than the number of sources p, 1 < p � q.
In subspace approaches the number of sensors must be
great than the number of sources, q > p. But, for BPSK
and MSK sources, Comon and Grellier [7] propose an
approach based on the adding of virtual sensor measure-
ments to solve the under-determined mixtures (p > q).

For the general case of the instantaneous mixture,

many algorithms and approaches have been proposed,

using: a maximum likelihood [8, 9], Kullback-Leibler

divergence properties [10], the natural gradient [11, 12],

deation approach [13], higher order statistics [14, 15,

16, 17], Nonlinear PCA [18], Lococode (Low complex-

ity coding and Decoding [19], Renyi's quadratic entropy

[20] and many other criteria. All these algorithms, in

the general case, were based on the high order statis-

tics (most of the cases, the fourth order cumulant or

moment are used).

By adding more assumptions, the algorithms can be

simpli�ed or the criteria can be based only on second

order statistics. Concerning the criteria based on sec-

ond order statistics, one can �nd di�erent approaches

using:

� The subspace properties of the channel [21, 22],

� The correlation properties of the sources (i.e. the

samples of each source are correlated) [23, 24],

� The non stationary properties of the sources [25].
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Figure 1: Mixture Model.

In this paper, we will discuss and shortly present that

the separation of non-stationary signal can be done us-

ing only second order statistic. In the following, we

assumed that H1 is satis�ed, the mixture is instanta-

neous and p = q.

2 Model and Approach

Let X be a p�1 zero-mean random vector denotes the

source vector at time t, Y be the observed signals ob-

tained by an instantaneous mixture and let M = (mij)

be a p� p full-rank denotes the unknown mixture ma-

trix. One can write (see �g. 1):

Y =MX (1)

Let us denote by W = (wij) the weight matrix and

byG =WM the global matrix. The estimated sources

are given by:

S =WY =WMX = GX; (2)

The separation is considered achieved when the

global matrix becomes [26]:

G = P�; (3)

where P is any p� p permutation matrix and � is any

p� p full matrix.

In this section, it is proved that one can separate non-

stationary signals using only the second order statistics

(a simple decorrelation). To explain the geometrical

solutions of this problem, let us consider, at �rst, the

case of two sensors and two sources.

2.1 Simple Case: Two Sources

Let us consider p = 2 and let us cosidere1 wii = 1.

Suppose that one can achieve the decorrelation of the

1Using the fact that the separation is achieved up to a permu-

tation and scale factor, see equation (3), one can write wii = 1
without any loss of generality.

output signals S and by using assumptionH1, one can

prove that:

(m11 +m21w12)(m21 +m11w21)P1+

(m21 +m11w21)(m12w21 +m22)P2 = 0; (4)

where Pi = Efx2ig is the power of the i-th source.

It is known that the power of a stationary signal is

independent of time. Now, it is easy to observe that the

equation (4) becomes the equation of an hyperbola,

so it is clear that the separation can not be achieved by
only using a decorrelation.

In the case of independent non-stationary sources,

the power Pi is changing independently
2 with time. In

this case, the equation (4) must be held for any value of

Pi > 0, i.e. the weight matrix coe�cient must satis�ed

the following condition:

(m11 +m21w12)(m21 +m11w21) = 0 (5)

(m21 +m11w21)(m12w21 +m22) = 0 (6)

After some algebraic equations, one can show that

the precedent equations are the separating solutions

(i.e G satis�ed the condition (3). For more details,

please see [27] ).

Fig. 2 shows some hyperbolas (see equation (4)) cor-

responding to di�erent signals with di�erent Pi and it

also shows the two intersection points corresponding to

the separation points.
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Figure 2: The set of hyperbola.

2.2 General Case

Let � denotes the covariance matrix of the non-

stationary sources (� is changing with time). Using

2The Pi can not have a linear relationship among each others.
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assumption H1, we deduce that � is a diagonal ma-

trix, � = diag(P1; : : : ; Pp). Using the fact that the

covariance matrix of the output signals becomes a di-

agonal matrix D when the decorrelation of the output

signals is achieved. So, one can deduce that G is an

orthogonal matrix and we can prove, see [27], that:

g
2

ilPl = dii (7)
X

l

gilgjlPl = 0 8l; and i 6= j (8)

Using the the fact that � is changing with time, one

can conclude that the equation (8) must hold for any

value of Pi (i.e the Pi are assumed to be independently

changing with time), and one can deduce that:

gilgjl = 0 8l; and i 6= j (9)

The last equation (9) means that:

� P1: All columns of G have at most one non zero

coe�cient.

� P2: All the rows of G have at least one non zero

coe�cient.

� P1 and P2 means that: Each column ofG has only

one non zero coe�cient or G satisfy the condition

(3). That means the separation can be achieved

using second order statistics.

3 Conclusion

In this paper, it has been proved that the second order

statistics is enough to separate the instantaneous mix-

ture of independent non-stationary signals.

For two signals, it has been shown that the decor-

relation of the output signals make the weight matrix

coe�cients belong to a set of hyperbolas. And these hy-

perbolas have two intersection points which correspond

to the blind separation solutions of non-stationary sig-

nals.

In the general case, it has been shown that the diag-

onalization of the auto-correlation matrix is enough to

separate the non-stationary signals.
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