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Abstract- Acoustic tomography is an issue of great importance
in many applications. Few algorithms have been dedicated to
the passive acoustic tomography of a single input single output
(SI'SO) channel. As matter of fact, most of those algorithms can
not be applied in a real situation i.e. for a Multi-Input Multi-
Output (MIMO) channel. In thispaper, we discussed at first the
features of the acoustic channel and signals then we proposed
an architecture to separate acoustic signals issued from an
acoustic realistic channel. The proposed structures used
algorithms based on independent component analysis (ICA). We
should mention here that many algorithms have implemented
and tested but only two algorithms give good results. The latter
algorithms minimize two different second order statistic criteria
in the frequency domain. Finally, some simulations have been
presented and discussed.

[. INTRODUCTION

To estimate ocean physical parameters (such astetope
distribution, currents, sediment structure),

results. Many others don’t work well or at all whéme
emitted signals are large band [14].

The Blind Separation of Sources (BSS) problem cteigin
retrieving unknown mixed independent sources frowirt

observed mixture. To reach that goal, researchee u

Independent Component Analysis (ICA) methods. Abtua
the last methods are ones of the most up-to-datkoae in

signal processing. These methods can be appliedaimy

fields including speech processing, data commuioicat
biomedical signal processing, radar, sonar as aellthe

surveillance and control of airport and sea traffic this

paper, we apply BSS algorithms in PAT in ordermpiiove

and simplify the PAT algorithms as well as the gssing of
the received signals.

[I. ACOUSTIC CHANNEL MODEL AND
ACOUSTIC SIGNALS

Thee@t A Acoustic Channel Model

Acoustic Tomography (OAT) is widely used. Acoustic

tomography is used in many civil or military apphions ynder some mild assumptions [12], acoustic subrearin
such as: Mapping underwater surfaces, meteorologiGhannel can be considered as a multiple paths wiich
applications, Warfare. OAT basic principle reliesy 0 frequency domain, each of them can be defined by a

d?p?‘“d‘?“ce of the acoustic propagation on the ?d;pa%omplex constant gain (i.e. a real lagand a real gain;L
distribution of the ocean parameters, in particular . .
temperature. Two kind of OAT can be used: Classictive O @ classic Single Input Single Output (SISO) te, the

OAT and Passive ones. In active OAT, a typical sourfélationship between the emitted sigel) , which will be

source in known fixed position should be emitted.tite
receiver, one can estimate the channel parameyeusihg
the properties of the received signal. Many alpong [11,

12] have been developed to deal with active acousti

tomography.

called later on as source signal and the receimedi{served
signal xt) is given by:

M
X(t) =Y Cis(t-1,)+n(t)
i=0
an Additive White Gaussianisd

(1)

Where n(t) stands for

Recently, the Passive Acoustic Tomography (PAT)] [LQAWGN) and M is the channel order or the numbepaths.

which is an acoustic tomography variant where tkaal
cooperative acoustic source is replaced by a nopamative

In general case, the channel can be consideredustiplél
Input Multiple Output (MIMO) channel whose matheioat

noise source as for example a ship of opportuhiyg, taken model is given by the following equation:

an increased importance because it exhibits threen m
the Submarine Acoustic Warfare

advantages: suits
Applications, avoids the need of both economicallyd

M
X(n)=> H(@)S(n~i)+N(n)

i=0

()

operationally expensive signal sources and allows t\yhereX (n)is the qx1 vector of observed signal§(n)is

investigation of areas as wide as those swept &yribving
ships and finally doesn't perturb the ecologicasteyn. In
typically real world PAT applications, underwategrals are
generated by various sources in motion whose numbad
positions are hardly identified. With more than ta@urces,

the px1 vector of sources, N(n) is a AWGHNx1 vector
and H is the mixing system where H(z) %(@)) isaqx p

complex polynomial matrix. In the following, we asse that
the channel

many actual tomography algorithms can't give plaasacoefficients i(z) are FIR filters.
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is a linear and causal one and that the



It is obvious that for PAT applications, Blind Soar

Separation (BSS) problem can be very helpful. InNSBS
the above problem can be solved by

terminology,
considering the blind separation of linear mixednais.
Linear mixtures include the following two models:

- Convolutive Mixtures: When the channel is a mptth
with memory channel (i.e. an echo real channelis Type of
mixture can represent the general
underwater channel, see equation (2).
Instantaneous Mixtures: this model is a simpglifie
convolutive one, especially when the channel iseanory-
less channel (without echo). The last case carbberged in
deep water environment. Then, equation (2) carebaitten
as:

X(t) = HS(t) + N(t) 3
In our study, it is the general case (2) which vk
considered. The instantaneous case has been sindigpd
Convolutive mixture algorithms are generally
consuming algorithms. Few of them have been deeelap
the literature [13] and are dedicated to speciisksé and
signals. In our knowledge, none of them has bedim@ed
to deal with our problem.
In practise, our simulated underwater acoustic ©ahnsed
the ray theory as a propagation model which is rtiure
appropriate model to our application. In our mogekand
bottom had been considered and some random ceetfci
have been added to characterize varieties on thartd the
bottom of the channel. Finally, an acoustic modelppsed
in [15] was used to consider the acoustic propagatifect.

B. Acoustic Sgnals

Generally, Independent Component Analysis
algorithms use only the independence assumptiothef
sources. In PAT applications, the sources are sigmals of
opportunities. Extensive experimental studies héeen
conducted by a research engineer in our laboratory
classify and characterize many recorded artifiGishde by
human activities as boats, ships or submarine s@ite) and
natural (mainly animals sounds or noises) signdiat study
is of extreme important to ours. In fact, accordingthe
characterization study, one can conclude the fatigacts:

- All the recorded signals have a background ocezise
which can be considered as an Additive White Gaussi
Noise (AWGN).

- Many signals are Gaussians or close to Gauseizs

- Even if all the signals are non-stationary signabme of
them have more or less periodic components asrimisgs.

- Natural signals are very sparse ones and adifaies are
Very noisy.

The above mentioned properties were very usefdetect
appropriate ICA algorithms.

lll. SEPARATION STRUCTURES APPLIED TO

ACOUSTIC SIGNALS
A. Background and Assumptions

The selected algorithms have been tested usinfplibaing

case of acoustitee steps:

- To valid our implementation, we use same (or lsimi
signals used by the authors of the algorithm, aedtny to
obtain same (or similar) results shown by the astho

- After that, the same algorithm should be testedsinple
mixture of acoustic signals.

- At the end, we try the algorithm on real signalsch cross

timeour simulated underwater acoustic channel.

In our experimental studies, we found that at thiedtstep
none of the tested algorithms can unfortunatelyieaeha
satisfactory separation according to a set of perdoce
indexes [16]. For this reason, a complete separatiacture
has been implemented using the following pre- anst-p
processing modules of the signals see Fig. 1:

- The Low Pass Filter helps us to reduce the impdct
AWGN

- The filter bank is to improve the frequency resioin of the
frequency algorithms.

- The recovering module of the signals is basedegsond

(Icaprder statistics and it uses the correlation of digmals in

time or frequency domain.

Pre- Processings Separation (S0S) Post-processing

Low Pass W
Fitter [T U T —

5 CI'“""QIX LowPass Band P Signal -
{3 i d and Pass - t
4} (, Filter Filter W vy ——| Reconstition |, O]

High Pass
L B ool O L ¥ —f

Fig.1. The proposed structure

Using these pre- and post-processings, we fourtdathang
the tested algorithms, only two [2, 7] have givatisfactory
results. They were dedicated to separate non-satio
sources (audio or music signals) and will be caltedhe
following SOS [2] and Parra [7]. Both of them are
implemented in frequency domain and are using eliscr
frequency adapted filter.

B. A Frequency Domain Method For Blind Source
Separation Of Convolutive Audio Mixture (SOS)

K. Rahbar et al. in [2, 6] propose an algorithm akhi
minimize a criterion based on the cross-spectraisite
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matrix of the observed signals. For non-statiorsignals,

the latter matrix depends of frequency and timechpo: The main idea of the algorithm [7] proposed by arr& and
Let P, (e, m) represent the cross-spectral density matrix d. Spence is similar to the previous ones [2] &8jd This

the observed signal at frequenayand time epoch m. Based algorithm will be called later “ParraThe main difference

on the above assumptions, the main idea of thiscagh between the two approaches remains on the condidere
comes from the following eq,uation: estimation model. The authors prefer instead dfnasing a

forward model B of H and finding a stable inversalirectly
Px(w,m) = H(w)Ps(w,mH * (@) + 52 (4) estimate a stable multi-path backward FIR modelThey

Where P,(w,m) is a diagonal matrix which represents thdVish to find model sources with cross-power-spéctemsity

cross-spectral density matrix of the sources atlepo and satlsfylrlg: A
o?is the power of N(t). In practise, has to be discretized As(@,m) =W(@)[Px(@,m) =A@, mW" (@) (8)
as @, :Zﬁy where K is the total number of frequencyA multlpa.th model W that satisfies thes_e equatiforsM

K epochs simultaneously can be found with a Leastaf®qu

samples. For g>pg?can be estimated from the smallesestimate:
2

- A A N K M
eigenvalue of the matriRx(w, m). Therefore, we consider W,As,An= argmin ZZ"Er(w m)| 9)
the following noise free case: W’(?f-’ﬁ"r >Qeek KL M1
. W (@)=1
Px (e, m) = H ()P (. mH ™ () (%)

To do so, the authors of [2] developed a two stagddM€reEr(@ m) =W(@)[Px(@.m) - Ay(@mMW" (@) - Ay(w,m)
algorithm. The first stage employs joint diagonatian [3, The additional time domain constraint on the fiere Q of
4, 5] of the set of cross power spectral densityrives W relative to the frame size K, i.@/(r) =0 O7r>Q<<K
will restrict the solutions to be continuous in thequency
Px(wm), m =0,..., M-1 at each frequenay,, over M jomain and solve the frequency permutation probéhe
epochs, to estimate the mixing system up to a p@tion  same idea was used in [9].
and diagonal scaling ambiguity at each frequenay lbi [2],
the authors used the following least-squares bgeed IV. EXPERIMENTAL RESULTS
diagonalization criterion for the case when a sanagtimate
Many simulations have been conducted. Generallynees
over 600000-1200000 samples to achieve the separati
The original sources are sampled at 44 KHz. In atnadi
the simulations, the separation of artificial ortumal
(6) mixtures have been successfully achieved. In these
simulations, we have set the channel depth betvw@énto
500m, the distances among the sources or the seaser
. from 30 to 300 m, the distances among the diffesentces
: ; ; nd the diverse sensors are from 1500 to 2500emumber
Px (@, mis a sample es_tlmate of the ob.served_ Slgn%f sensors (3 in all the simulations) is stricttgater than the
cross spectral density matrix at frequency bipand time umber of sources ).

epoch m, and\(«j ,m) is a diagonal matrix, representing theFig. 2 represents the experimental results obtaibgd

unknown cross-spectral density matrix of the scaiateeach applying the structure (SOS) proposed in fig.1epasate a
epoch m. In the second stage of the algorithm atithors Mixture of acoustic signals (Whale and ship). Weusth
propose a novel solution for solving the permutapiooblem Mention here, that good results have been obtdigeahly
which exploits the cross-frequency correlation lestv aPPlying SOS algorithm except for some configuratio

diagonal values of\(c, ,m) andA(cv,;, M) . Finally, having Notably when the sources are close to the watéacirFor
_ . the latter cases, we found that the Parra algoritiefiore
Blw) = H(w) N D(w) at each frequency bin

SOS algorithm could improve the overall results.

of eachPx (w, m) is available:

2
K-1M -

B(a&n)'l,i/r\w(m)lg n;)
F

Where B(w, )is an estimate of the mixing systeb(c, , )

N

P, (ak, M) = Beg )A (., mB* ()

(MORP*Pis a permutation matrix and f ) represents a
frequency-dependent diagonal matrix), we can cateuthe
separating matrixV(w, ) from the following equation:
W(w) =B" (w) (7)
WhereB* («, ) is the pseudo inverse of matBxa, ) .

C. Convolutive Blind Separation of Non-Sationary
Sources (Parra)
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Fig. 2. Experimental results: the first line showmspectively the original
and the estimated sources, the second line contiamebserved signals
(the sources are: a whale sound and a boat noise)

Best results have been obtained when both algositharra

Fig. 5 shows the experimental results obtained gy t
different algorithms (Parra, SOS or Parra + SO9)ieg to
the same acoustic sources and the same configuaitithe
acoustic channel at each simulation. In this figuee

normalized performance index based on nonlinear

decorrelation is used [16]. This index is forced&ozero for
the mixture values and 1 for the sources.

Index performance
e e S
&6

Mixture Parra 508 Parra-303 Source

Fig. 5

V. CONCLUSION

In this paper, we presented a general structuneguBSS

and SOS are used and the number of sensors iglystri@lgorithms applied on a real word application whistthe
greater than the number of sources, as shown B Fig

Pre-Processing Separation

Post-Processing

nhe__]
Channel Signal
Band Pa "
::I;;(el ass ) __| Reconstitution —= Y{j
High Pass Tt
Filter o

Fig.3. The general structure

Fig. 4 shows the experimental results obtained gplying
the general structure (Parra+SOS) proposed in fig.3
separate a mixture of acoustic signals (two shipsyolved
in an acoustic channel.

Tanker

TARTAON 1 IO

Estimates signals (0-3kHz)

Chalut

4 85 8 7 8 9 0 M 12 T 2 3 4 & & 7 8 9 10 1
Number of samples 10 Number of samples o
Wixed signals (0-1.5 kHz)

i 2 3 4 5 B 7 8 9 10 11 12
Number of samples x10°

Fig. 4. Experimental results: The figure shows eetipely the original, the
estimated sources at the first line and the obdesignals at the second line
(the sources are: two boat noises).

Passive Acoustic Tomography (PAT).

After many simulations, we obtained experimentaulis

that showed the necessity of considering pre-psicgsand
post processing which have to be applied to thervbd

signals in order to achieve properly the separatibrihe

sources.

Many algorithms have been implemented and testeduon
application but only few BSS algorithms dedicatedthe

separation of non-stationary signals gave satisfacesults.
Our future work consists on developing a BSS atbori
which can use other features of acoustic signals.
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