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Abstract- Acoustic tomography is an issue of great importance 
in many applications. Few algorithms have been dedicated to 
the passive acoustic tomography of a single input single output 
(SISO) channel. As matter of fact, most of those algorithms can 
not be applied in a real situation i.e. for a Multi-Input Multi-
Output (MIMO) channel. In this paper, we discussed at first the 
features of the acoustic channel and signals then we proposed 
an architecture to separate acoustic signals issued from an 
acoustic realistic channel. The proposed structures used 
algorithms based on independent component analysis (ICA). We 
should mention here that many algorithms have implemented 
and tested but only two algorithms give good results. The latter 
algorithms minimize two different second order statistic criteria 
in the frequency domain. Finally, some simulations have been 
presented and discussed. 

 
I. INTRODUCTION 

 
To estimate ocean physical parameters (such as temperature 
distribution, currents, sediment structure), The Ocean 
Acoustic Tomography (OAT) is widely used. Acoustic 
tomography is used in many civil or military applications 
such as: Mapping underwater surfaces, meteorological 
applications, Warfare. OAT basic principle relies on 
dependence of the acoustic propagation on the spatial 
distribution of the ocean parameters, in particular 
temperature. Two kind of OAT can be used: Classical active 
OAT and Passive ones. In active OAT, a typical sound 
source in known fixed position should be emitted. At the 
receiver, one can estimate the channel parameters by using 
the properties of the received signal. Many algorithms [11, 
12] have been developed to deal with active acoustic 
tomography. 
 
Recently, the Passive Acoustic Tomography (PAT) [10] 
which is an acoustic tomography variant where the usual 
cooperative acoustic source is replaced by a non-cooperative 
noise source as for example a ship of opportunity, has taken 
an increased importance because it exhibits three main 
advantages: suits the Submarine Acoustic Warfare 
Applications, avoids the need of both economically and 
operationally expensive signal sources and allows the 
investigation of areas as wide as those swept by the moving 
ships and finally doesn’t perturb the ecological system. In 
typically real world PAT applications, underwater signals are 
generated by various sources in motion whose number’s and 
positions are hardly identified. With more than two sources, 
many actual tomography algorithms can’t give pleasant 

 
 

results. Many others don’t work well or at all when the 
emitted signals are large band [14]. 
The Blind Separation of Sources (BSS) problem consists on 
retrieving unknown mixed independent sources from their 
observed mixture. To reach that goal, researchers use 
Independent Component Analysis (ICA) methods. Actually, 
the last methods are ones of the most up-to-date methods in 
signal processing. These methods can be applied in many 
fields including speech processing, data communication, 
biomedical signal processing, radar, sonar as well as the 
surveillance and control of airport and sea traffic. In this 
paper, we apply BSS algorithms in PAT in order to improve 
and simplify the PAT algorithms as well as the processing of 
the received signals. 

 
II. ACOUSTIC CHANNEL MODEL AND 

ACOUSTIC SIGNALS 
 

A. Acoustic Channel Model 
 
Under some mild assumptions [12], acoustic submarine 
channel can be considered as a multiple paths which, in 
frequency domain, each of them can be defined by a 
complex constant gain (i.e. a real lag iτ  and a real gain Ci). 

For a classic Single Input Single Output (SISO) Channel, the 
relationship between the emitted signal)(ts , which will be 

called later on as source signal and the received (or observed 
signal )(tx  is given by: 
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Where n(t) stands for  an Additive White Gaussian Noise 
(AWGN) and M is the channel order or the number of paths. 
In general case, the channel can be considered as Multiple 
Input Multiple Output (MIMO) channel whose mathematical 
model is given by the following equation: 
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Where )(nX is the 1×q  vector of observed signals, )(nS is 

the 1×p  vector of sources, N(n) is a AWGN 1×q  vector 

and H is the mixing system where H(z) = (hij(z)) is a q p×  

complex polynomial matrix. In the following, we assume that 
the channel is a linear and causal one and that the 
coefficients hij(z) are FIR filters. 
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It is obvious that for PAT applications, Blind Source 
Separation (BSS) problem can be very helpful. In BSS 
terminology, the above problem can be solved by 
considering the blind separation of linear mixed signals. 
Linear mixtures include the following two models: 
- Convolutive Mixtures: When the channel is a multi-path 
with memory channel (i.e. an echo real channel). This type of 
mixture can represent the general case of acoustic 
underwater channel, see equation (2). 
- Instantaneous Mixtures: this model is a simplified 
convolutive one, especially when the channel is a memory-
less channel (without echo). The last case can be observed in 
deep water environment. Then, equation (2) can be rewritten 
as: 
                   )()()( tNtHStX +=                              (3)                        

In our study, it is the general case (2) which will be 
considered. The instantaneous case has been studied in [1]. 
Convolutive mixture algorithms are generally time 
consuming algorithms. Few of them have been developed in 
the literature [13] and are dedicated to specific tasks and 
signals. In our knowledge, none of them has been optimized 
to deal with our problem. 
In practise, our simulated underwater acoustic channel used 
the ray theory as a propagation model which is the more 
appropriate model to our application. In our model, a sand 
bottom had been considered and some random coefficients 
have been added to characterize varieties on the top and the 
bottom of the channel. Finally, an acoustic model proposed 
in [15] was used to consider the acoustic propagation effect. 
 

B. Acoustic Signals 
 

Generally, Independent Component Analysis (ICA) 
algorithms use only the independence assumption of the 
sources. In PAT applications, the sources are some signals of 
opportunities. Extensive experimental studies have been 
conducted by a research engineer in our laboratory to 
classify and characterize many recorded artificial (made by 
human activities as boats, ships or submarine noises,etc.) and 
natural (mainly animals sounds or noises) signals. That study 
is of extreme important to ours. In fact, according to the 
characterization study, one can conclude the following facts: 
 
- All the recorded signals have a background ocean noise 
which can be considered as an Additive White Gaussian 
Noise (AWGN). 
 
- Many signals are Gaussians or close to Gaussians ones. 
 
- Even if all the signals are non-stationary signals, some of 
them have more or less periodic components as boat noises. 
 
- Natural signals are very sparse ones and artificial ones are 
very noisy. 
 
The above mentioned properties were very useful to select 
appropriate ICA algorithms. 

 
III. SEPARATION STRUCTURES APPLIED TO 

ACOUSTIC SIGNALS 
 

A. Background and Assumptions 
 

The selected algorithms have been tested using the following 
three steps: 
 
- To valid our implementation, we use same (or similar) 
signals used by the authors of the algorithm, and we try to 
obtain same (or similar) results shown by the authors. 
 
- After that, the same algorithm should be tested on simple 
mixture of acoustic signals. 
 
- At the end, we try the algorithm on real signals which cross 
our simulated underwater acoustic channel. 
 
In our experimental studies, we found that at the third step 
none of the tested algorithms can unfortunately achieve a 
satisfactory separation according to a set of performance 
indexes [16]. For this reason, a complete separation structure 
has been implemented using the following pre- and post-
processing modules of the signals see Fig. 1: 
- The Low Pass Filter helps us to reduce the impact of 
AWGN 

 
- The filter bank is to improve the frequency resolution of the 
frequency algorithms. 

 
- The recovering module of the signals is based on second 
order statistics and it uses the correlation of the signals in 
time or frequency domain. 
 

 
Fig.1. The proposed structure 

 
Using these pre- and post-processings, we found that among 
the tested algorithms, only two [2, 7] have given satisfactory 
results. They were dedicated to separate non-stationary 
sources (audio or music signals) and will be called in the 
following SOS [2] and Parra [7]. Both of them are 
implemented in frequency domain and are using discrete 
frequency adapted filter. 
 
B. A Frequency Domain Method For Blind Source 

Separation Of Convolutive Audio Mixture (SOS) 
 

K. Rahbar et al. in [2, 6] propose an algorithm which 
minimize a criterion based on the cross-spectral density 
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matrix of the observed signals. For non-stationary signals, 
the latter matrix depends of frequency and time epoch m: 
Let ),( mPx ω represent the cross-spectral density matrix of 

the observed signal at frequency ω and time epoch m. Based 
on the above assumptions, the main idea of this approach 
comes from the following equation:   

               IHmPHmP sx
2)(),()(),( σωωωω += +           (4) 

Where ),( mPs ω  is a diagonal matrix which represents the 

cross-spectral density matrix of the sources at epoch m and 
2σ is the power of N(t). In practise, ω  has to be discretized 

as K
k

k
πω 2= where K is the total number of frequency 

samples. For q>p, 2σ can be estimated from the smallest 

eigenvalue of the matrix ),(
~

mP x ω . Therefore, we consider 

the following noise free case:       

                      )(),()(),( ωωωω += HmPHmP sx              (5)                     

To do so, the authors of [2] developed a two stages 
algorithm. The first stage employs joint diagonalization [3, 
4, 5] of the set of cross power spectral density matrices 

),( mP x ω , m = 0,…, M-1 at each frequency kω , over M 

epochs, to estimate the mixing system up to a permutation 
and diagonal scaling ambiguity at each frequency bin. In [2], 
the authors used the following least-squares based joint 
diagonalization criterion for the case when a sample estimate 

of each ),( mP x ω is available: 
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Where )( kB ω is an estimate of the mixing system )( kH ω , 

),(
^

mP kx ω is a sample estimate of the observed signal 

cross spectral density matrix at frequency bin kω and time 

epoch m, and ),( mkωΛ is a diagonal matrix, representing the 

unknown cross-spectral density matrix of the sources at each 
epoch m. In the second stage of the algorithm, the authors 
propose a novel solution for solving the permutation problem 
which exploits the cross-frequency correlation between 
diagonal values of ),( mkωΛ and ),( 1 mk +Λ ω . Finally, having 

)( kB ω  = )( kH ω Π  D( kω ) at each frequency bin 

( ppR ×∈Π is a permutation matrix and D(kω ) represents a 

frequency-dependent diagonal matrix), we can calculate the 
separating matrix )( kW ω from the following equation: 

                            )()( kk BW ωω +=                                (7) 

   Where kB ω(+ ) is the pseudo inverse of matrix )( kB ω . 

 
C. Convolutive Blind Separation of Non-Stationary 

Sources (Parra) 

 
The main idea of the algorithm [7] proposed by L. Parra and 
C. Spence is similar to the previous ones [2] and [8]. This 
algorithm will be called later “Parra”. The main difference 
between the two approaches remains on the considered 
estimation model. The authors prefer instead of estimating a 
forward model B of H and finding a stable inverse to directly 
estimate a stable multi-path backward FIR model W. They 
wish to find model sources with cross-power-spectral-density 
satisfying: 
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A multipath model W that satisfies these equations for M 
epochs simultaneously can be found with a Least Square 
estimate:  
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Where ),()()],(),()[(),(
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The additional time domain constraint on the filter size Q of 
W relative to the frame size K, i.e. 0)( =τW  KQ <<>∀τ   

will restrict the solutions to be continuous in the frequency 
domain and solve the frequency permutation problem. The 
same idea was used in [9]. 
 

IV. EXPERIMENTAL RESULTS 
 
Many simulations have been conducted. Generally, we need 
over 600000-1200000 samples to achieve the separation. 
The original sources are sampled at 44 KHz. In almost all 
the simulations, the separation of artificial or natural 
mixtures have been successfully achieved. In these 
simulations, we have set the channel depth between 100 to 
500m, the distances among the sources or the sensors are 
from 30 to 300 m, the distances among the different sources 
and the diverse sensors are from 1500 to 2500 m, the number 
of sensors (3 in all the simulations) is strictly greater than the 
number of sources (2). 
Fig. 2 represents the experimental results obtained by 
applying the structure (SOS) proposed in fig.1 to separate a 
mixture of acoustic signals (Whale and ship). We should 
mention here, that good results have been obtained by only 
applying SOS algorithm except for some configurations 
notably when the sources are close to the water surface. For 
the latter cases, we found that the Parra algorithm before 
SOS algorithm could improve the overall results. 
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Fig. 2. Experimental results: the first line shows respectively the original 
and the estimated sources, the second line contains the observed signals 
(the sources are: a whale sound and a boat noise) 
 

Best results have been obtained when both algorithms Parra 
and SOS are used and the number of sensors is strictly 
greater than the number of sources, as shown in Fig3. 

 
Fig.3. The general structure 

 
Fig. 4 shows the experimental results obtained by applying 
the general structure (Parra+SOS) proposed in fig.3 to 
separate a mixture of acoustic signals (two ships) convolved 
in an acoustic channel. 

      

 
Fig. 4. Experimental results: The figure shows respectively the original, the 
estimated sources at the first line and the observed signals at the second line 
(the sources are: two boat noises). 
 

Fig. 5 shows the experimental results obtained by the 
different algorithms (Parra, SOS or Parra + SOS) applied to 
the same acoustic sources and the same configuration of the 
acoustic channel at each simulation. In this figure, a 
normalized performance index based on nonlinear 
decorrelation is used [16]. This index is forced to be zero for 
the mixture values and 1 for the sources. 
 

 
Fig. 5 

 

V. CONCLUSION 
 

In this paper, we presented a general structure using BSS 
algorithms applied on a real word application which is the 
Passive Acoustic Tomography (PAT). 
After many simulations, we obtained experimental results 
that showed the necessity of considering pre-processing and 
post processing which have to be applied to the observed 
signals in order to achieve properly the separation of the 
sources. 
Many algorithms have been implemented and tested on our 
application but only few BSS algorithms dedicated to the 
separation of non-stationary signals gave satisfactory results. 
Our future work consists on developing a BSS algorithm 
which can use other features of acoustic signals. 
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