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PAPER Special Section on Blind Signal Processing: ICA and BSS

ICA Papers Classi�ed According to their Applications and

Performances

Ali MANSOURy�, Nonmember and Mitsuru KAWAMOTOyy, Regular Member

SUMMARY Since the beginning of the last two decades,
many researchers have been involved in the problem of
Blind Source Separation (BSS). Whilst hundreds of algo-
rithms have been proposed to solve BSS. These algorithms
are well known as Independent Component Analysis (ICA)
algorithms. Nowadays, ICA algorithms have been used to
deal with various applications and they are using many per-
formance indices. This paper is dedicated to classify the
di�erent algorithms according to their applications and per-
formances.
key words: contrast function, Kullback divergence, mutual-

information, likelihood maximization

1. Introduction

At the beginning, the problem of blind source separa-
tion has been proposed by H�erault et al. [1], [2] as a
possible mathematical approach to mimic a biological
system, a central nervous processes of typical multi-
dimensional signals. Separentaly, Barness et al. [3]
proposed similar approach in communication context.
BSS problem consists on the separation of sources from
observed mixed signals.

The �rst algorithms deal with the cocktail party
problem, i.e.: In a small room, many people can chat
together. By using an array of microphones, we should
identify and recognize what every one in that room had
said.

Later on, this problem has been considered as a
very important signal processing problem. In fact, ICA
algorithms have been since used in divers situations
[4]{[7]: A source separation method has been applied
to airport surveillance [8]. Recently, the authors of
[9] propose a solution for discriminate several optical
sources by means of modi�ed optical trackers and blind
source separation algorithms. The ICA was also used
[10] to improve the on-line performance of information-
maximization-based blind signal separation. To ana-
lyze brain tumor, the authors of [11] use ICA to sep-
arate EEG signals. To construct an intelligent visual
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systems that could be close to human visual systems,
Szu et al. [12] use an intelligent pair of cameras and
advanced neural networks. And the list goes on and
on.

In our previous survey paper [6], we discussed gen-
eral concepts and assumptions used in ICA algorithms,
and we described the major used methods. Recently,
we focused on the di�erent performance indices used
in the literature [7]. The current manuscript can be
considered as the natural continuity study to our two
latest mentioned studies. Here we address the classi-
�cation problem of the di�erent ICA algorithms. The
classi�cation is a very hard task to achieve: In fact,
over 800 di�erent papers�� have been published and
cited in this subject. Among these papers, we select
about 250 papers according to their applications, per-
formances indices or theoretical approaches.

The actual version of our manuscript is far from
complete, but it can be considered as a �rst and main
step forward this subject. Beside that, we hope that
this manuscript with the previous ones would be of
great interest to major readers and a very helpful guide
to the beginners on this subject.

The second section of this manuscript presents a
general model of BSS. Then the third section presents
some important concepts used in BSS. The various al-
gorithms are classi�ed in the fourth section which con-
tains three tables: each table correspond to one type of
mixture models (i.e. instantaneous, convolutive or non-
linear mixture). In the �fth section, various algorithms
are presented. Finally, we draw some conclusions.

2. Mixing Models

The problem of blind source separation consists in re-
trieving the p unknown sources from the q mixture sig-
nals, obtained by q sensors, without major and strong
assumptions, i.e.:

� The sources are assumed to be statistically inde-
pendent of one another.

� The sources have a non-Gaussian distribution, or
more precisely, at most one of them can be a Gaus-
sian signal.

� The channel model is implicitly assumed to be

��The complete list can be downloaded from
http://ali.mansour.free/REF.htm
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Fig. 1 General structure.

known: a linear mixture (i.e. instantaneous mix-
ture or \a memoryless channel," and a convolutive
mixture) or a non-linear mixture.

� Generally, the number of sensors is also assumed
to be equal to or great than the number of sources.
However, we should mention that some algorithms
deal with the under-determined mixtures (or over-
complete, i.e. more sources than sensors) [13]{[23].

Let S(t) = (s1(t); � � � ; sp(t))
T denotes the p� 1 source

vector, Y (t) = (y1(t); � � � ; yq(t))
T the observation sig-

nals, and X
T the transpose of X . As shown in Fig. 1,

the channel e�ect can be modeled as:

Y (t) = H [S(t); : : : ; S(t�M)] +B(t); (1)

where H is an unknown function which depends only
on the channel and the parameters of sensors and B(t)
is an additive Gaussian noise vector independent from
the sources. The separation consists on the estimation
of a separating systemW that its output signalsX(t) =
W [H(S)] are the estimation of the sources (in Fig. 1,
G can be considered as the global system).

To generalize the model, the unknown function
H [ ] of Eq.(1) should be considered as a non-linear vec-
torial functionywhich depends on the present and the
past of the source signals. Unfortunately, it is known
that such model is a very hard problem to deal with.
Until now, there is no general solution or algorithm for
the general non-linear mixtures, see Eq.(1). However, a
few authors proposed some algorithms for speci�cs mix-
ture models (quadratic linear functions, post non-linear
mixture, etc.), which will be cited in the following.

On the other hand, linear mixtures have been very
well considered in the literature. Such mixture can be
divided in two categories:

� Convolutive mixtures or memory channels:
Here by using a convolutive product, Eq.(1) can
be written as:

Y (n) = [H(z)]S(n) +B(n)

=
X
l

H(l)S(n� l) +B(n) (2)

where H(l) stands for a q � p matrix which repre-

sents the channel e�ect, and

H(z) = TZ[H(n)] = (hji(z))

=
X
l

H(l)z�l

can be considered as a �lter matrix, i.e. its ith and
jth coeÆcient hij(z) is a linear �lter which presents
the e�ect of the ith source on the jth observed
signal.

� Instantaneous mixtures or memoryless chan-
nels: In this case, one can consider that the channel
has no memory, thus matrixH(z) can be rewritten
simply as a real matrix H:

Y (n) =HS(n) +B(n) (3)

It is clear [6] that by only using the general as-
sumptions cited before, one cannot obtain exactly the
original sources. In fact, the separation can be only
achieved up to a permutation and a scalar �lter (resp.
coeÆcient) in the case of convolutive (resp. instanta-
neous) mixtures.

3. ICA Algorithms

Here the ICA algorithms of the published papers can be
classi�ed regarding to two subjects, criteria and meth-
ods:

3.1 Optimized Criteria

Generally, most of ICA algorithms exploit the indepen-
dence property of the sources to achieve the separation.
The used methods can be divided into two major cate-
gories:

� Geometrical approaches: In this case, just a hand-
ful of algorithms can be found in the literature.
These algorithms use the geometrical properties of
source constellations or the geometrical properties
of the mixed signals in their phase plan (i.e. the
scatter plan).

� Statistical approaches: Almost all of the algo-
rithms are based on a statistical criteria. These
methods can be divided into the following sub-
categories:

1. Second Order Statistics (SOS): In this case,
it is clear that the independence assumption
is not enough to achieve the separation [6].
Therefore, additional assumptions should be
added (for example, the sources are correlated
in time and they have di�erent spectra, non-
stationary signals, etc.).

yA vectorial function H(Xi) is an application in IRm of
a space vector X 2 IRn. It can be considered as a vector of
functions where each of its components can be written as
function of the input vectors.
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2. High Order Statistics (HOS) [24], [25]: Here,
we mean that the order of the used statistics
is higher than two. Generally the fourth or-
der statistics is used. When the sources have
non-symmetrical Probability Density Func-
tions (P.d.f), the third order statistics can also
be used [26], [27]. We should mention here
that the contrast functions have widely used
in BSS, but almost all of the proposed contrast
functions are based on high order statistics.

3. Probability Density Function (P.d.f): The set
of P.d.f algorithm contents all the algorithms
that are using directly the independence as-
sumption. In this case, criteria are based on
such P.d.f properties as follows:

a. Second characteristic functions.
b. Shannon Information Entropy functions.
c. Reny's Entropy functions [28].
d. Shanon Mutual Information functions.
e. Renyi's Mutual Information.
f. Maximum Likelihood (ML) functions.
g. Maximum A Posteriori (MAP) functions.
h. Kullback-Leiber Divergences (KLD).
i. Sparse Representations etc.

3.2 Optimization Methods

Beside that, we should mention that the algorithms can
be also divided according to their convergence tech-
niques:

� Algebraic algorithms (or direct methods): The sep-
aration matrix can be obtained as the direct solu-
tion of a set of equations. In the general case, the
latest equations are based on high order statistics.
Later on, we will consider these algorithms as a
subset of HOS algorithms.

� Adaptive algorithms (or on line algorithms) min-
imize criteria by using a Gradient, a Stochastic
Gradient, a Conjugate Gradient, a Natural Gradi-
ent, a Jacobi Method, a Gauss-Newton Algorithm,
etc.

4. Performance Indices and Applications

As many performance indices [7] have been used by
di�erent researchers to evaluate their algorithms, The
comparison among di�erent methods and algorithms
become a very diÆcult task. The algorithms are classi-
�ed according to their mixture models: instantaneous
(see Table 1), convolutive (in Table 2) or nonlinear (in
Table 3) models. The following two subsections resume
the abbreviation and the notation used in the follow-
ing three tables. To simplify the notation, we divide the
di�erent algorithms according to their applications. We

should also mention that some algorithms deal with dis-
crete signals and other algorithms deal with continuous
signals.

4.1 Performance Indices { for Simulated Signals

In simulated experiments, the original sources and the
mixture parameters can be known. In this case, re-
searchers are using many performance indices [7]. Here,
we resume the various performance indices which have
been used:

1. Crosstalk, SNR & SINR (these performance in-
dices or the similar ones will be denoted in the
following by SNR): the crosstalk can be considered
as the inverse of the Signal to Noise Ratio (SNR)
which has been used by many other researchers.

CrossTalkj
def
= 10 log10

E(xj � si)
2

Es2
i

here E stands for the expectation and xj should be
the estimation of si. A similar index has been used
by other researchers as the Signal to Interference
Noise Ratio (SINR).

2. Gap or Distance to Diagonal Matrix (it is de-
noted by Gap): this gap is invariant by post-
multiplication of the form P� (i.e. by any general
permutation). Comon in [29] gives a de�nition of
a gap or a distance measure from the matrix G to
a diagonal matrix by:

�(G)
def
=
X
i

0@X
j

jgij j � 1

1A2

+
X
j

 X
i

jgij j � 1

!2

+
X
i

������
X
j

jgij j
2
� 1

������+
X
j

�����X
i

jgij j
2
� 1

�����
Here, the matrices H and W should be matrices
with columns of a unit norm matrices (this condi-
tion can be satis�ed by a simple multiplication by
a diagonal matrix).

3. Performance Index or Crosstalk Error (it is de-
noted by PerfIn): the \crosstalk error" is invariant
by a permutation:

Ce(G)
def
=

nX
i=1

0@ nX
j=1

jgikj

maxk jgikj
� 1

1A
+

nX
j=1

 
nX

i=1

jgikj

maxk jgikj
� 1

!

4. Rejection Level (Mean or Global) (it is denoted by
Rej): The Mean Rejection Level or Rate (MRL
or MRR) has been de�ned in many papers as the
mean power of the interference of the jth source
into the ith estimated source:
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Table 1 Classi�cation of algorithms for instantaneous mixtures (memoryless channel)

`
`
`
`
`
`
`
`
`̀

Sources

Criteria
High Order Statistics Second P.d.f Geometrical

(Cumulant, Moment, Order (Maximum likelihood,

Contrast function, etc.) Statistics Maximum A Posteriori

Mutual Information

KullBack divergence)

Direct Methods Adaptive Methods ISI [30]

Simulated Discrete
SER: [4], [31] Plot: [32], [33] Plot [34] SER: [35]

PerfIn: [36], [37]

Signals Continuous

Plot [38]{[42] ISI: [43]{[47] GRL: [48] Scat [49]

Mat: [50] Plot: [51]{[58] Plot [59]{[62] SNR [63]{[65]

SNR: [66]{[69] Rej: [70] Plot [71]{[81]

Gap: [29] SNR [82] PerfIn [83]

PerfIn: [84]{[87]

PlotE: [88]{[90]

Real Discrete

Signals Continuous

ECG [91]{[93] Speech: NatIm [94], [95] Speech:

Speech: [96]{[99] [100], [101] Speech [102]{[104], [105]{[109]

NLPCA-Image [110] PyroElectric [19]{[21], [111]{[113]

NatIm [114], [115] [116] MEG [117]

MEG [118] Image: [119] EEG [120]{[122]

Muti-tag: [123]{[125] ECG [126] ECG [127]{[131]

Radar Sig: [132] Rot-machine: fMRI [133]

MOS-VLSI; [134], [135] [136] Music [137]

No Simulation [138] [139], [140] [141]

Table 2 Classi�cation of algorithms for convolutive mixtures (memory channel)

`
`
`
`
`
`
`
`
`̀

Sources

Criteria
High Order Statistics Second P.d.f Geometrical

(Cumulant, Moment, Order (Maximum likelihood,

Contrast function, etc.) Statistics Maximum A Posteriori

Mutual Information

KullBack divergence)

Direct Adaptive Methods

Simulated Discrete
SER: [142] ISI: [143], [144]

Mat: [145]

Signals Continuous Plot: [146]{[150] Plot: [151]{[159] Plot [160], [161] ErrN [162]

SER: [163] ErrN [164] Per�n [165]

Real Discrete

Signals Continuous

Speech: Speech: [166]{[168] Seismic: [169]

[170]{[174] R Speech [175]{[177] Speech [178], [179]

Rot-machine Nuclear Reactor [180] R Speech [181]{[184]

[185]{[187] BioMed: [188], [189]

No Simulation [190]{[192] [193], [194]
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Table 3 Classi�cation of algorithms for nonlinear mixtures

`
`
`
`
`
`
`
`
`̀

Sources

Criteria
High Order Statistics Second Neural Networks P.d.f

(Cumulant, Moment, Order (Maximum likelihood,

Contrast function, etc.) Statistics Maximum A Posteriori

Mutual Information

KullBack divergence)

Direct Adaptive Methods

Simulated Discrete

Signals Continuous Plot: [244], [245] Plot [246]{[249] Plot [250]{[254]

Real Discrete

Signals Continuous

R Speech [255] NatIm: [256]

DynamProce: [257]

Speech: [258], [259]

No Simulation [260]

MRLij

def
= E g

2
ij

Based on the de�nition of the MRL, one can de-
�ned the Global Rejection Level (GRL) as:

GRL
def
=
X
i6=j

MRLij :

5. Global Index (it is denoted by GloInd): the global
index is a percentage performance index:

� (G(k))
def
= 100

X
j

�
max

i

�
jgij jP
i
jgij j

�
�

1

n

�
;

6. Error Norm (it is denoted by ErrN): the error norm
is based on a matrix norm:

EN(H)
def
= kH� bHk

where bH is an estimated mixing matrix.
7. Symbol Error Rate or Bit Error Rate (it is denoted

by SER): the index has been used for N binary
signals:

SER
def
=

Number of erroneous estimated source bits

Number of total source bits

8. Global matrix (it is denoted by Mat): by writing
down the global matrix, one can get an idea about
the performances of the algorithms.

9. Scatter Plot (it is denoted by Scat): using the fact
that two independent signals have a rectangular
shape in their own (or phase) plan which is called
the scatter plot of the two signals. Many authors
plot the scatter plots of the sources, the mixing
signals and the estimated signals to show whether
or not the separation is done.

10. Plotting of estimated sources or estimated mixture
parameters (it will be denoted by Plot): many re-
searchers use this method to present some types
of signals as speech, music or biomedical signals or
images.

11. Plotting of the Error Signals (the di�erence be-
tween the original signal and the estimated one)
or evaluating the mean square errors (it will be
denoted by PlotE)

4.2 Applications - for Real Signals

Many algorithms deal with real data and some of them
have been optimized to deal with real data in real en-
vironments. Such algorithms or papers can not be eas-
ily classi�ed according to their performance indices or
to be compared to other theoretical approaches. For
these reasons, we divided the algorithms in three cat-
egories: Algorithms with simulated signals, theoretical
approaches without simulation and algorithms with real
signals. ICA algorithms are used in various situations,
as follows:

1. To process Bio-Medical signals: Electro Cardio-
Grams (ECG), Electro Encephalo Graphs (EEG),
functional Magnetic Resonance Imaging (fMRI)
and Magneto Encephalo Grams (MEG). Hereafter
these signals are denoted by ECG, MEG, fMRI,
EEG. Some algorithms are used to deal with dif-
ferent biomedical signals. In this case, we will men-
tion these algorithms by BioMed.

2. Some researchers propose algorithms to separate or
enhance speech or music. We should mention here
that just few of them were applied to deal with
real environments. To distinguish between the two
sets, we denote by R Speech, the algorithms that
deal with real world environment.

3. Some image processing can be also done by using
ICA algorithms. In the literature, few algorithms
deal with real situation and real data, these algo-
rithms will be denoted by NatIm. NLPCA-Image
denotes the application of Nonlinear Principal
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Component Analysis (NLPCA) in image process-
ing.

4. ICA used also to improve multi-tag radio-
frequency identi�cation systems. These kind of
applications are denoted by Multi-tag.

5. Some algorithms deal with radar signals and they
are denoted by Radar.

6. MOS-VLSI denote the algorithms which are imple-
mented using digital circuits.

7. To improve the quality of pyroelectric sensors,
some ICA algorithms can be used. In the follow-
ing, they are denoted by PyroElectric.

8. Rotating machine vibration (i.e. Rot-machine)
analysis can be achieved by using ICA algorithms.

9. ICA are applied to nuclear reactor monitoring.
10. It could be applied to analysis seismic signals.
11. Finally, it can be applied also to study state change

in dynamic processes. This application is denoted
by DynamProce.

5. Other Papers

The above mentioned algorithms represent ICA algo-
rithms or methods which deal with the general case
and they could be classi�ed. Beside these papers, many
other researchers have been involved in di�erent stud-
ies concerning various �eld of ICA and they should be
considered separately, as follows:

1. Some recent books on this subject where various
algorithms are analyzed and compared [195]{[205].

2. We could not neglect either many interesting theo-
retical approaches on this subject [29], [103], [206]{
[218].

3. Some papers can be used as survey papers [6],
[219]{[225].

4. Some approaches are using di�erent technics as
Time-Frequency approach to separate instanta-
neous mixtures [226].

5. Kurtosis in the frequency domain has been used
for transient detection [227]. In addition, second-
or higherer-order statistics in frequency domain
have been used to identify convolutive mixtures
[228], [229]. A similar approach has been used to
separate speech signals [230]. A combined ICA
and frequency-domain techniques has been used in
[231] to separate the signals.

6. Some general studies, concerning stability or sta-
tistical and asymptotic performance analyses, are
presented in [232]{[241].

7. Various other situations and papers have been pro-
posed:

� A sampling problem has been discussed in
[242].

� An application of modi�ed source separation
algorithm using an OFDM technique has been

used to separate mobile communication sig-
nals [243].

6. Conclusions

In this paper, we intend to classify ICA algorithms ac-
cording to their applications and performances. The
proposed classi�cation is based on about 250 selected
papers among more than 800 references.

To conclude our paper, we must stress that ICA
algorithms and papers can be classi�ed according to
many di�erent criteria (type of the signals, perfor-
mances indices, applications, etc.). On one hand, it
is rough to classify the source signals into just simu-
lated signals and real signals. On the other hand, the
performance indices mentioned in our manuscript can-
not be used in real world applications, further details
can be founded in [7]. In addition, for real world ap-
plications (real data), the features of the signals and
the mixing properties depend a lot on the experiments.
For these reasons among other, we choose to classify
the various papers into three main categories depend-
ing on the mixture models (instantaneous, convolutive
or nonlinear). Then in each categories, we divide the
algorithms into many sub-categories as mentioned in
the second section. Later on, we divided the sources
into two types: Real or Simulated. Applications can be
considered as a good criteria to classify the real signals.
But for simulated signals, the performance indices are
used instead. We should mention that it is very dif-
�cult to provide more details about the signals or the
experiments. Otherwise, we should add details for al-
most every cited paper. We should also stress that this
classi�cation isn't the only possible ones. In fact, one
could �nd some di�erent classi�cation criteria in the
di�erent books published on this subject [195]{[205].

Finally, the applications of ICA constitute a do-
main in full expansion. We could say also that a big
bang of ICA algorithms is started at the beginning of
the last decade. Indeed many algorithms have been pre-
sented by di�erent researchers. Some of them can be
downloaded from web pages. Many other links to web
pages about ICA can be obtained from the following
addresses:

Various BSS and ICA algorithms: Program pack-

ages or Demos,

http://www.bsp.brain.riken.go.jp/ICALAB/

http://www.cis.hut.fi/projects/ica/fastica/

http://www.cs.berkeley.edu/~fbach/kernel-ica/

http://www.cnl.salk.edu/~tewon/ICA/Code/

http://www.bmc.riken.go.jp/sensor/Allan/RICA/

ftp://ftp.cnl.salk.edu/pub/tony/sep96.public

http://tsi.enst.fr/icacentral/algos.html

http://redwood.ucdavis.edu/bruno/sparsenet.html

http://www.first.gmd.de/~ziehe/research.html
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http://www.lis.inpg.fr/demos/sep_sourc/ICAdemo/

http://www.cnl.salk.edu/~scott/icademo/

http://www2.ele.tue.nl/ica99/

http://www.i3s.unice.fr/~comon/matlab.html

http://www-sigproc.eng.cam.ac.uk/oldusers/dcbc1/

http://sdgroup.snu.ac.kr/~nkm/genie/genie.zip

http://sound.media.mit.edu/~paris/bs-code.txt

http://sweat.cs.unm.edu/~bap/demos.html

http://www.s2.chalmers.se/~salle/demo.html

http://hlab.phys.rug.nl/demos/ica/

http://www.princeton.edu/~srickard/bss.html

http://www.islab.brain.riken.go.jp/~shiro/

General web pages and link collections: People and

laboratories working on ICA,

http://www.cis.hut.fi/projects/ica/

http://echo.gaps.ssr.upm.es/user/yolanda/

http://web.media.mit.edu/~paris/ica.html

http://www.cnl.salk.edu/~tewon/ica_cnl.html

http://www.bmc.riken.go.jp/sensor/Allan/ICA/

http://www.cnl.salk.edu/~tony/ica.html
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