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PAPER

Blind Separation of Sources using Density Estimation and Sim-
ulated Annealing

C. G. Puntonety, and A. Mansour a) yy, Regular Member

SUMMARY This paper presents a new adaptive blind sep-

aration of sources (BSS) method for linear and non-linear mix-

tures. The sources are assumed to be statistically independent

with non-uniform and symmetrical PDF. The algorithm is based

on both simulated annealing and density estimation methods us-

ing a neural network. Considering the properties of the vectorial

spaces of sources and mixtures, and using some linearization in

the mixture space, the new method is derived. Finally, the main

characteristics of the method are simplicity and the fast conver-

gence experimentally validated by the separation of many kinds

of signals, such as speech or biomedical data.

key words: Independent Component Analysis (ICA), Decor-

relation, High Order Statistics, Density Estimation, Simulated

Annealing and Geometrical Approaches.

1. Introduction

The problem of linear blind separation of sources in-
volves obtaining the signals generated by p sources, vec-

torially represented by X(t) = (x1(t); � � � ; xp(t))
T , from

the linear mixture signals, E(t) = (e1(t); � � � ; ep(t))
T

(we assume that the number of sources is equal to the
number of sensors):

E(t) = A(t)X(t) (1)

A(t) = (aij(t)) stands for the e�ect of the channel
(i.e. the linear mixing matrix in the case of instanta-

neous mixture). The mixture is considered as station-
ary, when A(t) is constant, i.e., A(t) = A. The sepa-

ration is considered achieved [1] when one can estimate
a matrix W(t) = (wij (t)) such: The goal traditionally

thought within the context of separation of sources is to
estimate A(t) by means of another matrix W(t) such

that the output vector, S(t):

S(t) = (s1(t); � � � ; sp(t))
T =W�1(t)E(t); (2)

it coincides with the original sources, X(t), except for
a scale factor and a permutation, i.e.,

W(t) = A(t)PD (3)

where P is a permutation matrix and D is a full-rank

diagonal matrix. Any matrix W related to A as in (3)

Manuscript received November 15, 2000.
Manuscript revised May 22, 2001.
yThe author is with the Dept. of Architecture and Com-

puter Technology. University of Granada. Granada, Spain.
yyBio-Mimetic Control Research Center (RIKEN),

Nagoya, 463-0003 Japan.
a) E-mail: mansour@ieee.org

is said to be similar to A.

In the ICA framework, many approaches have been pre-
sented, with applications in real world problems [2]:

as communications, feature extraction, pattern recogni-
tion, data visualization, speech processing and biomedi-

cal signal analysis (EEG, MEG, fMRI, etc), considering
the hypothesis that the medium where the sources have
been mixed is linear, convolutive or non-linear. ICA is a

linear transformation that seeks to minimize the mutual
information of the transformed data, E(t), the funda-

mental assumption being that individual components of
the source vector, X(t), are mutually independent and

have, at most, one Gaussian distribution [3]. The 'In-
fomax' algorithm [4] is an unsupervised neural network

learning algorithm that can perform blind separation
of input data into the linear sum of time-varying mod-
ulations of maximally independent component maps,

providing a powerful method for exploratory analysis
of functional magnetic resonance imaging (fMRI) data

[5]. Using the maximization of the negentropy, an ICA
'Infomax' algorithm for unsupervised exploratory data

analysis applied to electroencephalograph (EEG) mon-
itor output has been introduced [6]. A great number of

solutions for BSS are based on the minimization or can-
cellation of independence criteria (that use higher-order
statistics) [7], [8]. From geometric considerations, and

for linear mixtures of bounded sources, various algo-
rithms have been presented, all of which �nd a matrix

that is similar to A by determining the slopes of the
edges that are incident on any one of the vertices of the

hyperparallelepiped that contains the observation space
[9]{[11]. Using a contrast function de�ned in terms of
the Kullback-Leibner divergence or of the mutual in-

formation and exploiting the information on the dis-
tribution support, another ICA procedure derived for

separating an instantaneous mixture of sources, based
on order statistics has recently been developed [12].

For non-linear mixtures, a modi�ed self-organizing
map algorithm based on density estimation has been de-

veloped [13], extracting the local geometrical structure
of distributions obtained from mixtures of statistically
independent sources and performing non-parametric

histogram density estimation; this method is appropri-
ate for sharply peaked distributions. For post-nonlinear

mixtures, a batch procedure based on a maximum like-
lihood approach has been developed [14]. In [15] an
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adaptive procedure is described for the demixing of lin-

ear and non-linear mixtures of two signals with proba-
bility distribution functions (PDF) that are symmetric
with respect to their centres, and non uniform, per-

forming a �xed piecewise linearization in the case of
nonlinear mixtures in order to obtain the distribution

axes of probability that are parallel to the slopes of the
parallelepiped for two sources. ICA is a promising tool

for the exploratory analysis of biomedical data. In this
context, a generalized algorithm modi�ed by a kernel-
based density estimation procedure has been studied

in [16] to separate EEG signals from tumour patients
into spatially independent signals, the algorithm allow-

ing artifactual signals to be removed from the EEG by
isolating brain-related signals into single ICA compo-

nents. Using an adaptive geometry-dependent ICA al-
gorithm, Puntonet et al. [17] demonstrate the possi-

bility of separating biomedical sources, such as EEG
signals, analyzing only the observed mixing space due
to the almost symmetric PDF of the mixtures. The ap-

proach presented in this paper combines the geometric
properties of the distributions, which provide the inde-

pendent components, with the advantages of competi-
tive neural networks, by means of a dynamic piecewise

linearization. Finally, in order to provide fast initial
convergence, a simulated annealing technique has been

used.

2. Proposed Method

Our method combines adaptive processing with a sim-

ulated annealing technique. At �rst, a preprocessing
stage to normalizey the observed space, E(t), in a set

of concentric spheres, is needed in order to adaptively
compute the slopes corresponding to the independent

axes of the mixture distributions by means of an array
of symmetrically distributed neurons in each dimension.

The normalization stage is followed by the processing or
learning of those neurons, which estimate the high den-
sity regions in a way similar, but not identical to that

of self organizing maps. A simulated annealing method
provides a fast initial movement of the weights towards

the independent components by generating random val-
ues of the weights and minimizing an energy function.

In general, for BSS and taking into account the possible
presence of non-linear mixtures, the observation space

(e1; � � � ; ep) is subsequently quantized in n spheres of
dimension p, circles if p = 2, each with a radiusyy �(k)
(k = 1 � � �n) covering the points as follows:

�(k � 1) < kE(t)k < �(k) (4)

yIn order to work with well conditioned signals, the
observed signals ei(t) are preprocessed or adaptively set
to zero mean, �i, and unity variance, �i, as follows:

ei(t) =
ei(t)��i

�i
; where i 2 f1; � � � ; pg.

yyThe radius �(k) can be determined by equation (21).

�(0) = 0 and 8k 2 f1; � � � ; ng. From now on, we use

E(�(k); t) to denote the vector E(t) that veri�es (4).
If, in some applications, the mixture process is known
to be linear then, the number, n, of layers is set to 1,

and a normalization of the space is made with �(1) = 1.
Although the quantization given in (4) allows a piece-

wise linearization (when n increases) of the observed
space for the case of non linear mixtures, it is also use-

ful with the assumption of linear media since it allows
us to detect unexpected non linearities [17].

2.1 Density Estimation

The above-described preprocessing is used to apply a
density estimation technique by means of a neural net-

work whose weights are initially located on the Carte-
sian edges of the p-dimensional space, such that there

are p neurons with 2p weights per layer. The distance
between a point, E(�(k); t), and the 2p weights existing

in the p-dimensional space (Figure 3) is:

d(i; �(k)) = k ~Wi(�(k); t)�E(�(k); t)k (5)

~Wi(�(k); t) is a p dimensional vector, i 2 f1; � � � ; 2pg,

and k 2 f1; � � � ; ng. A winner neuron, labeled i
�, in

a layer �(k), is at a minimum distance from the point

E(�(k); t) and veri�es:

d(i�; �(k)) = minfd(i; �(k))g (6)

i 2 f1; � � � ; 2pg and k 2 f1; � � � ; ng. For the sake of sim-
plicity, we use � to denote the layer �(k) de�ned in (4).

The main learning process for density estimation when
a neuron approaches the density region, at time t, is
given by:

~Wi(�; t+ 1) = ~Wi(�; t) + �(t)f(E(�; t); ~Wi(�; t))

with �(t) being a decreasing learning rate and

i 2 f1; � � � ; 2pg. Note that a great variety of suitable
functions, �() and f(), can be used. In particular,

a learning procedure that activates all the neurons at
once is adequate by means of a factor,K(t), that modu-
lates competitive learning as in self-organizing systems,

i.e.,

~Wi(�; t+ 1) = ~Wi(�; t) +

�(�; t)sgn[E(�; t)� ~Wi(�; t)]Ki(t)

Ki(t) = exp(���1(t)k ~Wi(�; t)� ~Wi�(�; t)k
2) (7)

Here �(t) is a neighborhood decreasing parameter, i 2

f1; � � � ; 2pg; i� 2 f1; � � � ; ng and �(t) is now geometry-
dependent and proportional to �(t), as follows:

�(�; t+ 1) = �(t)�Æ (8)

where 0 < �(t) < 1; � 2 f�(1); � � � ; �(n)g, Æ and � mod-

ify the value of the learning rate, �(t), depending on the
correlation of the points in the observation space and

on the number of layers in order to equalize the angular
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velocity of the outer and inner neurons. Note that the

weight update is carried out using the sign function, in
contrast to the usual way [18]. As is well known, the
term K(t) modulates the learning sphere of jurisdic-

tion depending on the value of �(t). After the learning
process, the neurons are maintained in their respective

layers, �, by means of the following normalization:

~Wi(�; t) =
~Wi(�; t)�

k ~Wi(�; t)k
(9)

i 2 f1; � � � ; 2pg and � 2 f�(1); � � � ; �(n)g. After con-

verging, at the end of the density estimation process,
the weights in (9) will be located at the centre of the

projections of the maximum density points, or inde-
pendent components, in each layer. For the purpose of

BSS, a matrixW similar to A and verifying expression
(3) is needed. Once the neural network has estimated
the maximum density subspaces by means of adaptive

equation (7), and due to the piecewise linearization of
the observation space with n spheres, a set, 
, of ma-

trices can be de�ned as follows:


 = fW�(1); � � � ;W�(n)g (10)

where, for p dimensions, the matrices W� (� 2

f�(1); � � � ; �(n)g.) have the following form:

W� =

�
w11� � � � w1p�

wp1� � � � wpp�

�
: (11)

For linear systems or "symmetric" non-linear mixtures

(as in Figure 2, see section 5 for more details), the
elements of this matrix, W�, obtained using density
estimation are considered to be the symmetric slopes,

in the segment of sphere �, between two consecutive
neurons initially located on the same axis, for each di-

mension j, and �nally computed in (7) if the following
transformation is carried out under geometric consider-

ations:

wd

ij �fkg(t) =
~w2j i(�fkg; t)� ~w2j i(�fk � 1g; t)

~w2j j(�fkg; t)� ~w2j j(�fk � 1g; t)
(12)

where ~wi j(�; t) is the jth component of ~Wi(�; t), i; j 2
f1; � � � ; pg and � 2 f�(1); � � � ; �(n)g. The superscript,

d, indicates that the separation matrix has been com-
puted using density estimation, which will be useful in

Section 2.3. Note that equation (12) works only with
even-labeled neurons, 2j, and can be simpli�ed for lin-
ear media if n = 1 and �(0) = 0 ; for instance, when

p = 2 (j = 1; 2) it is practical to operate with only
two weights, w2 and w4, in the circle �(1). If n > 1, the

use of several p-spheres is useful for non-linearity detec-
tion, since di�erent matrices, W� in (11), are obtained

for successive values of �. Nevertheless, equation (12) is
shown in this form as a particular case of the expression

valid for non-linear separation of sources (Sect. 4).

2.2 Simulated Annealing

Simulated annealing is a stochastic algorithm that rep-

resents a fast solution to some combinatorial optimiza-
tion problems. As an alternative to the density esti-
mation method described above, we �rst propose the

use of stochastic learning, such as simulated anneal-
ing, in order to �nd a fast convergence of the weights

around the maximum density points in the observation
space E(t). This technique will be e�ective if the cho-

sen energy, or cost function, Eij , for the global system
is appropriate. The procedure of simulated annealing
is well known [19]. It is �rst necessary to generate ran-

dom values of the weights and, secondly, to compute
the associated energy of the system. This energy van-

ishes when the weights become a global minimum, the
method thus allowing escape from local minima. For

BSS problem, we de�ne an energy E similar to the cost
function described in [20] and related to the four-order

statistics of the original p sources, due to the necessary
hypothesis of statistical independence between them, as
follows:

E =

p�1X
i=1

pX
j=i+1

Eij(t) (13)

where, Eij(t) = Cum2
22(si(t); sj(t)) and Cum22 is the

2x2 cumulant. the estimation of that energy can be

done using the methods described in [21]. The change
in global energy, �E, created by the new state af-
ter the generation of random weights, is given by:

�E = E(t + 1) � E(t). If �E < 0 then the process
accepts the change. If �E > 0, the system accepts the

change providing P > r; where r is a number randomly
chosen for P , the Boltzmann distribution given �E;

computed by:

P = exp

�
�
�E

T (t)

�
(14)

where T (t) is the positive valued temperature at time
t that regulates the search granularity for the systems

global minimum. If �E > 0 and P < r, then the
network returns all weights to their original state. In

each iteration, by incrementing the time t by 1, a new
value for the temperature T (t) is calculated, using the

following equation (cooling schedule):

T (t) =
T0

1 + �(t)
(15)

where T0 is the initial temperature. The parameter �(t)
is variable, with �(t) = log(t) in the Boltzmann ma-

chine but �(t) = t in the Cauchy machine. Although
the main algorithm of simulated annealing has been

shown above, some modi�cations to the procedure can
be made when this method is applied to BSS. For in-

stance, we propose the function �(t) in (15) should be
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Fig. 1 Comparisons among the convergences of: Density Estimation (DE), Simulated

Annealing (SA) and both of them (DE) + (SA). A) Two sources and B) Three sources.

�(t) = (1 + t)2 � 1, in order to provide fast conver-

gence. With this process, and using wi j(�; t) to denote
the component j of the random weight accepted by the

system in a p-sphere of radius �, the separation matrix
is easily computed by means of the following rule:

ws

ij�
(t) = wij(�; t) (16)

i j= j 2 f1; � � � ; pg and � 2 f�(1); � � � ; �(n)g. The super-
script, s, indicates that the separation matrix has been

computed using simulated annealing. Note that, as in
equation (12), the coeÆcients of the separation matrix
in (16) with indexesy i = j are set to 1, and thus it is

necessary to generate p(p� 1) random weights instead
of p2. Once a global minimum is obtained, when the

energy in (13) vanishes, the value of the W matrix is
close to that of the originalA matrix, i.e., the W coeÆ-

cients provide the independent components. This con-
vergence will only be true and possible if a good choice

of the energy function, E, has been made [20]. The-
oretically, the proposed energy function (13) depends
on a four-order cumulant; it has been experimentally

corroborated in several simulations as an estimator of
statistical independence, obtaining good results by es-

timating statistics over more than a hundred samples.

2.3 Density Estimation with Simulated Annealing

In spite of the fact that the technique presented in Sec-

tion 2.2 is fast, the greater accuracy of density esti-
mation by means of the competitive learning shown in

Section 2.1 encourages us to consider a new approach.
An alternative method for the adaptive computation of

the weight matrix W concerns the simultaneous use of
the two methods described in Sections 2.1 and 2.2, i.e.,
density estimation and simulated annealing. Now, a

proposed adaptive rule of the weights is the following:

Wij�(t+1) =Ws

ij�
(t)�(t)+Wd

ij�
(t)(1��(t)) (17)

yUsing the fact that the separation can be achieved up
to a factor, see (3).

where i j= j 2 f1; � � � ; pg; � 2 f�(1); � � � ; �(n)g and �(t)

is a decreasing function that can be chosen in several
ways (Section 3). The main purpose of equation (17)

is to provide a fast initial convergence of the W co-
eÆcients by means of simulated annealing during the
epoch in which the adaptation of the neural network

by density estimation is still slow. When the value
�(t) goes to zero, the contribution of the simulated an-

nealing process vanishes since the random generation of
weights ceases, and the more accurate density estima-

tion by means of competitive learning begins. The main
contribution of simulated annealing here is the fast con-

vergence compared to the adaptation rule (7), thus ob-
taining an acceptable closeness of W to the distribu-
tion axes (independent components). However, the ac-

curacy of the solution when the temperature, T (t), is
low depends mainly on the adaptation rule presented

in section 2.1 using density estimation since, with this,
the energy in (13) continues to decrease until a global

minimum is obtained.
A measure of the convergence in the computation

of the independent components with the number of

samples or iterations is shown in Figures 1 and 2, which
compare the methods, density estimation and simulated

annealing, using the root mean square error (RMSE),
�(t), de�ned as follows:

�(t) =
1

p(p� 1)

sX
i j=j

(wij(t)� aij(t))2 (18)

i; j 2 f1; � � � ; pg. Note that, a priori, the unknown

matrix A(t) depends on time, although in the simu-
lations it remains constant (Section 5). Figure 1.A

shows the RMSE in the case of p = 2, with the two
sources having kurtosisyy values of ks1 = �0:02 and
ks2 = 0:02, respectively. Using simulated annealing and

yyThe kurtosis can provide some information concern-
ing the distribution of a signal x(t) [22] and it is given by

kx =
<x(t)4>�3<x2(t)>2

<x(t)2>2 , where < x(t) > is the expectation

of x(t).
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A - Estimated sources. B - Observed signals. C - Evaluation of the weight matrix.

Fig. 2 Separation of non linear mixture.

10000 samples the error remains at � = 0:05, whereas

using simulated annealing and density estimation the
error becomes � = 0:01 with the same number of iter-

ations. In Figure 1.B the RMSE in the case of p = 3
is shown. The three sources have kurtosis values of
ks1 = 3:1; ks2 = 3:5 and ks3 = 3:2, respectively. In this

case, with a larger number of sources to be separated,
using simulated annealing and 15000 samples the error

remains at � = 0:06, whereas using simulated anneal-
ing and density estimation the error becomes � = 0:01.

Although simulated annealing is a stochastic process,
the error values presented here are the result of several
simulations and are for guidance only since each exper-

iment presents some randomness and is never the same
because of the di�erent mixture matrices and sources.

3. Some Improvements

The techniques presented in Section 2 can be modi�ed
to improve basic performance parameters such as time
convergence and accuracy. For instance, in relation

to density estimation and linear media, we propose to
eliminate some points that do not provide outstanding

information, either by previous preprocessing or adap-
tive processing; this is done by means of the average

correlation coeÆcient, computed as follows:

< ce >=
1

p(p� 1)

X
i;j

ceij and ceij =
1

T

TX
t=1

ei(t)ej(t)

i; j 2 f1; � � � ; pg; i < j and de�ning a parameter

Æ = exp(� < ce >
2). For linear mixtures, many kinds

of sources, such as speech signals, contain unnecessary

points near the origin that do not provide information
when the computation of the distribution axes is being
carried out; these can be removed (not processed), with

n = 1 in (4), if the following condition is veri�ed:

kEk <

X
i

�iÆ = R (19)

where R < �(1) is the radius of the p-sphere and

i 2 f1; � � � ; pg. Furthermore, and in order to improve
time convergence in the density estimation, equation

(7) can be simpli�ed for certain applications in which

only a winner neuron, i, approaches the density region

in each iteration, thus eliminating the term K(t). A
similar type of learning can be used when the learn-

ing space of each neuron, iq ; is reduced to its associate
quadrant, qi; the range of qi being �=2; this is useful
when it is known in certain real applications that the

mixing matrix, A, veri�es aii > aij (i; j = 1; � � � ; p).
If this is so, only the representative winner neuron, i�

q
,

is active, and it is only necessary to detect the quad-
rant that e(�; t) belongs to. Another fact that speeds

up the learning task concerns equation (7) for linear
or nonlinear symmetrical mixtures (Simulation 1, Fig-
ures 3 and 4), since the symmetry of the distribution of

points means that each time a neuron i learns, the other
neuron located on the same axis, j, also learns but in

the opposite direction and vice versa, as follows:

~Wi(�; t+ 1) = ~Wi(�; t)

+(�1)���i
�(t)sgn(E(�; t) � ~W��(�; t))

~Wj(�; t+ 1) = ~Wj(�; t)

+(�1)���j
�(t)sgn(E(�; t)� ~W��(�; t)) (20)

�� 2 fi; jg; i 2 f1; 3; � � � ; 2p � 1g and j 2 f2; 4; � � � ; 2pg.
Some improvements are also feasible in the estimation

of the distribution axes in non-linear mixtures, since
the spatial neuron order (Figure 5) in successive layers

may change due to the form of the density distribu-
tion; for correct adaptive separation in equation (23)
it is necessary to check, periodically, the following: If

kwi(�; t)�wj(�� 1; t)k < kwi(�; t)�wi(�� 1; t)k, then
wi(�� 1; t) = wj(�� 1; t), here i j= j 2 f1; � � � ; 2pg.

Once this expression is computed, the rearranging
is done bottom-up, beginning from the �rst layer. Fur-

thermore, in linear or non-linear mixtures, the real ob-
served signals may exhibit non-uniform density distri-

butions (Figure 4), and the procedure generates adap-
tively variable layers in accordance with the density of
points. Then, the distance between the circles, �(k; �),

in time � , can be adjusted as a function of the density
of points, �(k; �), between two successive layers:

�(k; � + 1) = �(k; �) + 
(�(k � 1; �)� �(k; �)) (21)
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A - Observed signals.

B - Weight matrix by simulated annealing.

C - Weight matrix.

Fig. 3 Simulations in Linear and nonlinear symmetrical mix-

tures.

Fig. 4 Experimental results in the case of two sources.

A - Observed signals.

B - Weight matrix by simulated annealing.

C - Weight matrix.

Fig. 5 Simulation in the case of three signals.
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where 
 is a learning rate and k 2 f1; � � � ; ng. In

relation to simulated annealing, the use of this tech-
nique for the BSS, instead of (14) and (15), is based on
the following expressions:

P = exp

�
�

�E

T 2(t)

�
and T (t) =

T0

(1 + t)2
(22)

Equation (22) allows us to �nd a global minimum in a
fast convergence time using the energy function de�ned

in (13). Moreover, there are several ways of implement-
ing �(t) in (17) in order to switch the two processes,
simulated annealing and density estimation. One of

them is to use, simply, a decreasing function �(t) simi-
lar to that of T (t) in (15) or (22). Another one consists

of using the density estimation process when the energy
decreases to a given value. Finally, we propose switch-

ing the two processes when no changes in the energy
function, �E = 0, have occurred in a given time.

4. Separation Matrix

Since the main simulations presented in this paper re-

fer to linear mixtures of signals, we will use expression
(12) for computation of the weights, although in the

general case and for pure non-linear mixtures (without
symmetry at the origin), the above expression must be

replaced by a similar one, as follows:

wd

ij�fkg(t) =
~w�(j) i(�fkg; t)� ~w�(j) i(�fk � 1g; t)

~w�(j) j(�fkg; t)� ~w�(j) j(�fk � 1g; t)
(23)

i; j 2 f1; � � � ; pg, � 2 f�(1); � � � ; �(n)g, �(j) 2 f�(1) <

�(2) < � � � < �(p) such d(�(j); �) < d(�(m); �)g, m 2

f1 � � �2pg and m j= j. Note that equation (12) is a par-

ticular case of equation (23), with �(j) = 2j, and that
the coeÆcients W d

ii�
= 1 in both expressions. Equation

(23) means that the p-dimensional subspace associated
to the neurons labeled (�(1); � � � ; �(p)) around point ep
provides the linear contour where the mixture can be

considered as linear. For the purpose of separation, the
network uses the typical recursive recall, taking into

account the layer quantization in the observation space
and the matrix computed in (17), i.e.:

si(t+ 1) = ei(�; t)�

pX
j=1

Wij�(t)sj(t) (24)

i 2 f1; � � � ; pg; i j= j and � 2 f�(1); � � � ; �(n)g. This ex-
pression is also used by the simulated annealing process
in order to compute the energy function in (13).

5. Simulation Results

Three simulations are presented in order to show the
eÆciency of the proposed algorithms. The crosstalk pa-

rameter, cti, is used to verify the similarity between the
original, xi, and separated, si, signals with N samples,

and it is de�ned as follows:

cti = 10 log

 P
N

t=1(si(t)� xi(t))
2P

N

t=1 s
2
i
(t)

!
(25)

i 2 f1; � � �pg. The �rst one, Figure 2, corresponds to
the synthetic non-linear mixture suggested in [13], for

sharply peaked distributions, the original sources being
digital 32-valued signals with uniform PDF (xi(t) 2

f�16; � � � ;�1; 0; 1; � � � ; 15g), as follows:

e1(t) = �2sgn[x1(t)]x1(t)
2 + 1:1x1(t)� x2(t)

e2(t) = �2sgn[x2(t)]x2(t)
2 + 1:1x2(t) + x1(t) (26)

Using 20000 samples and n = 4 layers, good estima-

tion of the density distribution is obtained, Figure 2 C.
The four equation matrices obtained (10), using density
estimation, were:

W�(1) =

�
1 1:7

�1:6 1

�
; W�(2) =

�
1 :25

�:22 1

�

W�(3) =

�
1 :2

�:22 1

�
; W�(4) =

�
1 :1

�:15 1

�

The second simulation, shown in Figures 3 and 4, con-
cerns the separation of a mixture of two real signals, the

Spanish words "dedos (�ngers)" and "mueca (doll)",
captured with a 12 bit-converter, a sampling frequency

of 12kHz, and presenting a signal-noise ratio of 24 dB.
The correlation coeÆcient of the original sources was

< cs >= 1
N

P
N

t=1 s1(t)s2(t) = �0:05, and the value of
the kurtosis, ks, was ks1 = 4:7 and ks2 = 4:2 for s1(t)

and s2(t), respectively. The original, A, and computed,
W, matrices obtained with 10000 samples were:

A =

�
1 �:8

:8 1

�
; W =

�
1 �:791

:788 1

�

The crosstalk parameter of the separated signals,

s1(t) and s2(t), was ct1(t) = �24 dB and ct2(t) = �23
dB, respectively. It has been veri�ed that the greater

the kurtosis of the signals the more accurate and faster
is the estimation, except for the case in which the sig-
nals are not well conditioned or are a�ected by noise,

and this is so since a great density of points on the
independent components speeds up convergence when

competitive learning of equation (7) is used. More-
over, since the distribution estimation is made in the

observation space, E(t), and the separation is blind, it
is useful to take into account the kurtosis of the ob-

served signals in order to test the time convergence and
the precision. A third simulation is presented in Fig-
ures 5 and 6 with three synthetic supergaussian sig-

nals. Note that Figures 5.A, 5.B and 5.C show the pro-
jection of the three-dimensional observation space onto

the (e1; e2) plane. Therefore, the weight w6 provides, in
this plane (e1; e2), a slope value of +1, corresponding to

the quotient (W13=W23) in (12), with (i; j) = (1; 3) and
(i; j) = (2; 3). The correlation coeÆcient for the origi-

nal sources was < cs >= �0:08, and the kurtosis, ke, of
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Fig. 6 Simulation results: Three sources.

the three observed signals, was ke1 = 3:4; ke2 = 2:6 and

ke3 = 3:2. The original, A, and weight, W, matrices
obtained with 15000 iterations were:

A =

0
@ 1 :5 :5

:5 1 :5

:5 :5 1

1
A ; W =

0
@ 1 :494 :492

:505 1 :511

:519 :502 1

1
A

The crosstalk parameter of the three signals s1(t), s2(t)

and s3(t) was ct1(t) = �22 dB, ct2(t) = �32 dB and
ct3(t) = �26 dB, respectively.

6. Conclusion

We have shown a new powerful adaptive-geometric
method based on competitive unsupervised learning
and simulated annealing, in order to �nd the distribu-

tion axes of the observed signals or independent com-
ponents, by means of a piecewise linearization in the

mixture space. The time convergence of the network
is fast, even for more than two signals, mainly due to

the initial simulated annealing process that provides a
good starting point with a low computation cost, and

the accuracy of the network is adequate for the sepa-
ration task, the density estimation being very precise,
as several experiments have corroborated. Besides the

study of noise, future work will concern the application
of this method to ICA with linear or nonlinear mix-

tures of biomedical signals, such as in EEG and fMRI,
where the number of signals increases sharply, mak-

ing simulated annealing suitable in a quantized high-
dimensional space.
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