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SUMMARY The blind separation of sources is a recent and

important problem in signal processing. Since 1984 [1], it has

been studied by many authors whilst many algorithms have been

proposed. In this paper, the description of the problem, its as-

sumptions, its currently applications and some algorithms and

ideas are discussed.
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1. Introduction

The blind separation of sources problem consists in re-
trieving unknown sources from only observing a mix-

ture of them. In general case, authors assume that the

sources are non-Gaussian signals and statistically inde-
pendent of one another.

The blind separation of sources was initially proposedy

by H�erault et al. [3], [4] to study some biological phe-

nomena [1], [5] (Biological sensors are sensitive to many
sources, therefore the central nervous system processes

typically multidimensional signals, each component of

which is an unknown mixture of unknown sources, as-
sumed independent [6]). Later on, this problem has

been a very known and important signal processing

problem. In fact, we can �nd this problem in many

situations: radio-communication (in mobile-phone as
SDMA (Spatial Division Multiple Access) and free-

hand phone), speech enhancement [7], separation of

seismic signals [8], [9], sources separation method ap-

plied to nuclear reactor monitoring [10], airport surveil-
lance [11], noise removal from biomedical signals [12],

[13], etc.

2. Models & Assumptions

The blind separation of sources problem consists in re-

trieving the p unknown sources from the q mixture sig-

nals, obtained by q sensors.
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Let S(t) = (s1(t); � � � ; sp(t))T denotes the p � 1 source

vector, Y (t) = (y1(t); � � � ; yq(t))T the observation sig-

nals, and X
T the transpose of X. As shown in Fig. 1,

the channel e�ect can be modeled as:

Y (t) = H[S(t); : : : ; S(t �M )]; (1)

where H is an unknown function which depends only

on the channel and the sensors parameters. The sepa-

ration consists on the estimation of a system G that its
outputs signals X(t) = G[H(S)] are the estimation of

the sources.

2.1 Linear Mixtures

In the general case, H[ ], in Eq. (1) is non-linear vec-

torial functionyy which depends on the present and the
past of the source signals.

Until now, there is no general solution or algorithm for

non-linear mixtures. However, a few authors proposed

some algorithms for speci�cs mixture functions [14]{
[18]. In the following, we assume that the channel is

linear. In this case, Eq. (1) can be rewritten as:

yj(t) =

pX
i=1

hji(t) � si(t); 1 <= j <= q (2)

where � is the convolutive product and hji(t) is a linear
�lter which presents the e�ect of the ith source on the
jth observation signal. In this case, the mixture is said

to be a convolutive mixture (i.e. the channel has some

memory e�ect). Thus, one can write:

Y (n) = [H(z)]S(n) =
X
l

H(l)S(n � l); (3)

where n denotes discrete time. Using the z-transform,

Mixture Separation
S(t) X(t)Y(t)

H(t) G(t)

Fig. 1 General structure.

yyA vectorial function H(Xi) is an application in IRm of
a space vector X 2 IRn. It can be considered as a vector
of functions where each of its components can be written as
function of the input vectors.
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Eq. (3) can be rewritten as:

Y (z) =H(z)S(z); (4)

and in this case the convolution becomes a simple ma-

trix multiplication.
Finally, many authors are involved in the separation of

instantaneous mixture (or memorylessmixture). In this

case, one can consider that the channel has no memory,
thus matrixH(z) can be rewritten simply as a real ma-

trix H. In this case, we can write:

Y (n) = HS(n): (5)

2.2 Assumptions

The blindness in separating sources has been questioned

in [19]. Aside this fact, it is widely used the following
assumptions:

� Assumption 1: The sources are statistically in-

dependent of one another. This assumption is very

important and a common one for all the algorithms
of blind separation.

� Assumption 2: The channel can be instanta-

neous or convolutive and the matrixH is assumed
to be invertible. Authors generally assume that

p = q or q > p (this is a fundamental assump-

tion for the sub-space approaches), but some works

have been carried out for the case of p > q for par-
ticular sources (as BPSK and MSK sources [20]).

� Assumption 3: The sources have a non-Gaussian
distribution, or more precisely, at most one of them

can be a Gaussian signal.

In the next section, we discuss the necessity of these

assumptions.

2.3 Indeterminacy

In blind source separation, one can obtain the sources,

but there are some indeterminacies. In fact, Eq. (4)
can be rewritten as:

Y (z) =H(z)PT��1(�PS(z)) = �H(z) �S(z);

where �H(z) = H(Z)PT��1, �S(z) =�PS(z),� is any

full rank diagonal matrix and P is any permutation ma-

trix. It is obvious that �S(z) can be considered as the
source vector (its component are statistically indepen-

dent from each other). For this reason, the separation

can be only achieved up to a permutation and a scalar

�lter (resp. coe�cient) in the case of convolutive (resp.
instantaneous) mixture.

3. Independence Properties

The �rst assumption is fundamental for the blind sepa-

ration. To explain the necessity of this assumption, let

us start by giving some important concepts.

By de�nition, two random variables ui and uj are said

to be independent if their mutual probability density

function (pdf) is the product of their marginal pdf
[21], [22]:

p(ui; uj) = p(ui)p(uj): (6)

For discrete random variables, Eq. (6) can be rewritten

using a similar relationships.

4. Important Concepts

To use the independence property, one can choose be-
tween the following concepts:

� Kullback-Leibner divergence: Let ui and uj be

two random variables with marginal pdf pui(v) and

puj (v), the Kullback-Leibner divergence is de�ned

as:

�(pui; puj )
def

=

Z
pui(v) log

pui(v)

puj (v)
dv >= 0: (7)

where �(pui ; puj) = 0 if and only if (i�)

pui(v) = puj (v) [23], [24].

� Mutual Information: It should be mentioned

that some authors propose methods based on the

mutual information i(pU ) [25], [26]:

i(pU ) =

Z
pU(V ) log

pU(V )

�N
i=1pui(vi)

dV (8)

where U is a random vector and its components

are ui. If ui are independent from each other then
i(pU ) = 0.

� Moments and cumulants: Many proposed algo-

rithms use indirectly the statistical independence
by using the relationships among the moments or

the cumulants. The moment and the cumulant are

grounded on the de�nition of characteristic func-
tions. The �rst characteristic function �U (V ), of p

continuous random vector UT = (u1; u2; : : : ; up)
T ,

is de�ned as [21], [22], [27]{[29] the expectation of

the function h(U ) = exp(jV T
U ):

�U (V )
�
= E exp(jV T

U ) =

Z
exp(jV T

U )dF (U ); (9)

where F (U ) is the cumulative distribution func-

tion (cdf) of U . The second characteristic function
	U (V ) is de�ned as:

	U (V ) = lnf�(V )g: (10)

These two functions are very important for the def-

inition of the moments and the cumulants. In fact,
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the qth order moment of U is given by [22], [27],

[29], [30]:

Momq(u1; u2; : : : ; uq)
�
= E(u1u2 : : :uq) =

(�j)q @
q�U(V )

@v1 @v2::: @vq

���
V=0

: (11)

where EX is the expectation of X. The qth order

cumulant of U is given by:

Cumq(U )
�
= Cum(u1; u2; : : : ; uq) =

(�j)q @
q	U (V )

@v1 @v2::: @vq

���
V=0

: (12)

Using Eq. (12), one can prove that the cumulant of

U is equal to zero if at least one component of U is

statistically independent from the others [30], [31].

In fact, let us suppose that the �rst r components
of U are independent from the others. in this case

the �rst characteristic function can be rewritten

as:

�U (V ) = E exp(jV T
U ) =

E exp(j

rX
i=1

viui)E exp(j

qX
i=r+1

viui); (13)

and one can write the second characteristic func-
tion as:

	U (V ) = lnE exp(jV T
U )

= ln(E exp(j

rX
i=1

viui)E exp(j

qX
i=r+1

viui))

= ln(E exp(j

rX
i=1

viui)) + ln(E exp(j

qX
i=r+1

viui)):

Finally, the qth order cumulant of U becomes:

Cumq(U ) = (�j)q
@
q ln(E exp(j

P
r

i=1
viui))

@v1 @v2::: @vq

���
V=0

+ (�j)q
@
q ln(E exp(j

P
q

i=r+1
viui))

@v1 @v2::: @vq

���
V=0

= 0 (14)

It is obvious that the �rst (resp. the second) part
of the cumulant only depends on vi, 1 <= i <= r < q,

(resp. r <= i <= q), and its derivative with respect

to the vector V is zero.

Therefore the statistical independence of the sig-
nals means that the cross-cumulant of all the order

should be equal to zero. However in practice, we

can not cancel the cross-cumulant of all the order
and in many cases authors use the cumulants up

to the fourth order.

4.1 Separation Principles

Many researchers use the �rst assumption (see Sect.

2.2) in di�erent ways:

1. Many algorithms use the minimization of criteria

based on the cumulants.

2. Some algorithms use the direct de�nition of the in-

dependence and they minimize a criteria based on
the maximization of the likelihood or the entropy

(or the kullback-Leibner divergence).

As we mentioned in the previous sub-section, the statis-

tical independence of the signals means that the cumu-

lant of all the order should be equal to zero. However,
the following question arises: what is the minimum or-

der of the cumulant which can be used to achieve the

separation? To answer this question, let us suppose

that the sources are zero-mean signals and let us start
our discussion with the second order statistics.

4.1.1 Second Order Statistics (SOS)

In the general case, where we only assume the three
previous assumptions (see Sect. 2.2), the SOS are not

enough to separate the sources. In fact, it is known

that every matrixH have singular value decomposition

(SVD) [34]:

H = U�
1=2
V; (15)

where� is a diagonal matrix and,U andV are orthog-
onal, i.e. U:UT = I (or unitary for complex matrix, i.e.

UUh = I), here I is the identity matrix and Uh is the

hermitian transpose of U. Without loss of generality,

let us suppose that the sources are unite power. In this

case the covariance matrix of the observation signal be-
comes:

� = E(Y Y h) = E(U�1=2VSS
hVh(�1=2)hUh)

= U�1=2VE(SSh)Vh�1=2Uh

= U�1=2VVh�1=2Uh

= U�U
h (16)

It is obvious that the covariance matrix � doesn't de-

pend on the matrix V. Thus, SOS alone is not enough
to separate the sources.

4.1.2 Third Order Statistics (TOS)

When the sources have symmetric pdf the TOS are zero.
This restriction can not be acceptable in many cases,

thus TOS are not enough to achieve a blind separation

of the sources.

4.1.3 Fourth Order Statistics (FOS)

Some authors denote the statistics of order higher than

two by HOS or high order statistics: The FOS are
enough to separate blindly the sources, and they are

used in many algorithms [35]{[40]. In the case of two

sources, it is was proved by algebraic method in [41]
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that the separation can not be achieved by using SOS

but it can be using the FOS.

We must mention that the cumulant of order higher
than two are zero for Gaussian signal. Thus, the sep-

aration of Gaussian signals can not be carried out by

using the HOS and one needs to add the third assump-
tion (see subsection 2.2). Now, by using the same fact,

one can separate the sources using the HOS in the case

of additive Gaussian noise [42]. Finally, the fourth or-

der cross-cumulants of zero-mean signal are given by
[43]:

Cum13(ui; uj) = Euiu
3
j
� 3Eu2iEuiuj

Cum31(ui; uj) = Eu
3
iuj � 3Eu2jEuiuj

Cum22(ui; uj) = Eu
2
i
u
2
j
� Eu

2
i
Eu

2
j
� 2(Euiuj)

2

5. Summary Of Principal Methods

The classi�cation of the methods is very di�cult be-

cause some of the algorithms use di�erent aspects. In

this section, we will try to subjectively classify the al-

gorithms with respecting to their major aspect.

5.1 Instantaneous Mixtures

5.1.1 Moments or Cumulants Based Algorithms

The �rst algorithm was proposed by Jutten et al. [6],

[47], [48], for recursive architecturey . That algorithm
consists on updating the separation matrix C = (cij)

by using:

cij(t + 1) = cij(t) + �f [x̂i(t)]g[x̂j(t)]; (17)

where f and g are two odd non-linear functions. Jutten

and Herault algorithm was a heuristic proposal, but it
was proved in [49] that it works for symmetric pdf. To

generalize that approach, Jutten et al. [47], [50] pro-

posed another criterion based on the cross-cumulant
Cum31(xi; xj).

Independently from the previous work, Lacoume and

Ruiz [51] proposed another heuristic two step algo-

rithm. Using the SVD decomposition of the matrix

H, H = U�
1
2V, they proved that the matrices U

and � (see Eq. (16)) can be estimated by a simple

decorrelation, and the matrix V can be estimated by

maximization of the following function:

F (�;X) =
1

(Cum13(X))2 + (Cum31(X))2 + (Cum22(X))2

where � is a rotation angle, the matrix V is replaced

by a Givens rotation matrix.
Finally, Mansour et al. proposed in [40], [52], using the

yIn this case, the separation matrix is denoted by C
and has a zero on its principal diagonal. With respecting
to our notation, one can �nd that the separation matrix
G = (I+C)�1.

Levenberg-Marquardt algorithm [53], the minimization

of a criterion based only on the cross-cumulant (2x2).

5.1.2 Algebraic Approaches

Comon Approach: His approach is based on the fact

that a square matrix can be decomposed as:

H = LQ�; (18)

where L is an lower triangular matrix with positive
components on its principal diagonal, Q is a rotation

matrix, and� is a signature matrixyy. Comon [54], [55]

proposed a direct algebraic method to separate the in-

stantaneous mixture of two sources. In fact, to separate
the sources up to a permutation P and a scale factor

(i.e. diagonal matrix�), one can compute a matrix F

such that:

FH =�P: (19)

or more simply, F = QhL�1. Comon proved that one
can estimate L by using a simple Cholesky factoriza-

tion [34] of the covariance matrix of the observed sig-

nals. Now, the estimation of Q can be obtained by the
product of p2 plans rotations (i.e. Givens rotations).

Finally, the di�erent Givens angles can be obtained as

the solution of second order polynomial equations based

on the fourth order cumulants. In [38], Comon general-
ized his approach for three sources. Finally, Cardoso et

Comon [56] proposed a direct solution using tensorial

notation.
Garat method: Garat [57] proposed an algebraic

method which consists on resolving a non-linear equa-

tion system based on the cumulants. He proved that

the column of the mixture matrix can be estimated up
to a permutation and a scaling factor from the solutions

of quadratic and homogeneous equations based on the

fourth order cumulants. He also presents an adaptive
version of his method using an ad-hoc algorithm ap-

plied on a couple of signals at the same time.

Mansour-Jutten approach. This approach [41] is limited

to the case of two sources and it consists on �nding an
algebraic solution to a non-linear equation system based

on the statistics of the observed signals.

5.1.3 Contrast Function

A contrast function J [58]{[60] is an application in IR
of a space random vector X 2 IRn. It only depends on

the pdf of X and has the following properties:

� J(X) is symmetric with respect to the components

xi of X (i.e. for any permutation matrix P, we

have J(X) = J(PX)).

yyA signature matrix is a diagonal one which has �1 as
components on its principal diagonal.
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� J(X) is invariant by any scale change (i.e. for any

full rank diagonal matrix �, we have J(�X) =

J(X)).

� J(X) is maximum if the components of X are mu-

tually independent, i.e., for any full rank matrix

H, we have J(HX) <= J(X).

� if the components of X are independent among

them, then J(HX) = J(X) i� H = P� (P is a

permutation matrix and � is a full rank diagonal
one).

Contrast functions in blind source separation were in-

troduced at �rst by Comon in [58], as:

J(x) =
X
i

jCum4(xi)j2: (20)

Using a likelihood estimator, this function was also in-

dependently introduced by Gaeta [61].

Moreau and Macchi [62] proposed an algorithm based
on the minimization of that contrast function with re-

spect to the separation matrix and they suggest that

separation can be carried out easily by using another
contrast function:

J(x) =
X
i

jCum4(xi)j: (21)

This new contrast function [62] can separate the sources

that have the same sign of kurtosis (the normalized
fourth order cumulant [63], [64]). In addition, it needs

a whitening pre-processing step (see subsection 5.1.6).

In [65], [66], Macchi and Moreau proposed another con-
trast function which doesn't need a whitening pre-

processing step:

J(X) =

pX
i

jCum4(xi)j
(Ex2

i
)2

��
pX

i<j=1

jCum(x2
i
x
2
j
)j

Ex2
i
Ex2

j

� 

pX
i j=j=1

jCum(yiy
3
j
)q

Ey2
i
(Ey2

j
)3

They proved that the last function [60] is a contrast
function for X, if � >= 1;  >= 0.

5.1.4 Deation

For the sources with the same sign of kurtosis [63],

[64], Delfosse and Loubaton [69] proposed a deation
method (i.e. at each iteration, one can get one source).

Their method was inspired by the one proposed by

Shalvi and Weinstein [70]. After a whitening pre-

processing step (see the subsection 5.1.6), they separate
the sources by minimizing a contrast function (with re-

specting to a separation vector G(n)):

K(G) =
E(G(n)Y (n))4

4
:

In fact, they proved that when G(n) corresponds to a

minimum of K then one can obtain the estimation of

one source by xi(n) = G(n)Y (n). After that, one can
reduce the number of sources to separate the remaining

p� 1 ones. They proved [71] that this algorithm don't

have any spurious solutions and that this approach can
be applied to the general case where the sources can

have di�erent sign of kurtosis [71]. Finally, using the or-

dinary di�erential equation (ODE, see [72]), they found

that variance of the asymptotic error is [73]:

� = �
E(x6i )

2Cum4(xi)
I;

where I is the identity matrix and Cum4(x) is the

fourth order cumulant of x.

5.1.5 Kullback-Leibner & Mutual Information

Lacoume et al. proved [23], [74] that the mutual infor-

mation is a contrast function. The mutual information

comes from the de�nition of the Kullback-Leibner di-
vergence (7) by:

i(px) =

Z
px(u) log

px(u)

�N

i=1pxi(ui)
du

Bell and Sejnowski proposed on [25] an information-
maximization approach to blind separation and blind

deconvolution problem. In addition, Pham [24] pro-

posed an independent component analysis (ICA) algo-
rithm based on Kullback-Leibner divergence.

5.1.6 Whitening & Rotation

Many authors [51], [55], [75] proposed algorithms to run
in two steps: The �rst is a whitening pre-processing,

where they only use the SOS. The second step is the

estimation of a rotation matrix which is estimated gen-
erally by using the HOS.

Amongmany algorithms, we will mention the algorithm

of Cardoso and Laheld. This algorithm was subject of

many papers and research studies:
For the sources with the same sign of kurtosis, La-

held et al. [75]{[77] proposed two versions of that

algorithms: PFS "parameter free separation" (named
later as EASI "equivariant adaptive separation via in-

dependence" [77]) and the SPFS (Stabilized PFSy). In

[75], [77], a performance study and some simulations

can be founded.
The main idea of that algorithm consists on the decom-

position of the separation matrix G as the product of

two matrices G = WU, where W is a spatial decor-
relation matrix and U is an unitary one such that the

sum of the kurtosis of the output signals is maximum.

Therefore, the separation matrix can be updated by:

yAn IBSS (Iterative Blind Source Separation) algorithm,
which is similar to the EASI and the SPFS, can be founded
in [78]
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G(t+ 1) = (I+ �J(T(t)S(t)))G(t); (22)

where J(T(t)S(t)) is a criterion of G (T is the total

matrix T =HG). From (22), they prove that the total

matrix is updated by [75]:

T(t + 1) = fI� �J(T(t)S(t))gT(t): (23)

The last equation means that the performances of this

algorithm are independent from the mixture matrixH.
In [79], Cardoso et al. proposed a batch version NPFS

(Newton PFS) which is an approximation using a New-

ton matrix. In their work, they introduce the relative
Gradient algorithm. The last algorithm was indepen-

dently introduced by Amari et al. [80], [81] as the Nat-

ural Gradient.

5.1.7 Likelihood Maximization

It is known that the likelihood estimator is e�cient

and non-biased estimator [83], [84]. Gaeta and Lacoume

[85], [86] proposed an approach based on the likelihood
maximization. That approach consists on the model-

ing of the source pdf by a fourth order Gram-Charlier

expansion (or Edgeworth expansion) [43] and the es-
timation of the di�erent parameters using likelihood

estimators. In [87]{[89], Harroy and Lacoume study

the performances of the Gaeta-Lacoume algorithm and

they founded that that algorithm can reach the Cramer-
Rao bound [83].

Independently Pham et al. [90] proposed an algorithm

based on the likelihood maximization. At �rst, by as-
suming that the sources are independent and identically

distributed (iid) signals, they found, using the maxi-

mum of likelihood, the best estimator of the mixing

matrix H. After that, they used the found parame-
ters to estimate the mixing matrix in case of non-iid

signals. Garat [57] presents two versions of that algo-

rithm: the QMV-I (Quasi-Maximum likelihood) for iid

signals; and QMV-II for the sources correlated in time
but not in space and the last algorithm is only using

the SOS.

In digital communications, the sources pdf can be
known, Belouchrani [78], [91] proposed an likelihood

maximization algorithm for separate iid sources with

some additive Gaussian noise. The likelihood max-

imization is carried out according to EM algorithm
[92], [93]. He developed two versions of his approach:

MLS (MaximumLikelihood Separation) and the SMLS

(Stochastic Maximum Likelihood Separation).

5.1.8 Second Order Statistics

In many cases, the sources can be considered as corre-

lated in time. In these cases, one can simplify the cri-
teria and used only the SOS. The principal idea of this

algorithm consists on the separation using the covari-

ance matrix at di�erent instants. In all these methods,

one must also assume that the correlation functions of

the sources are di�erents [94]. For stationary correlated

in time sources (but independent from each other), one
can �nd a � j= 0 such:

ES(t)ST (t� � ) = C(� ); (24)

where E is the expectation and the matrix C(� ) is a

non-zero diagonal matrix. F�ety [95] proposed an algo-

rithm which consists on the diagonalization of di�erent
covariance matrices of the observed signals:

�(� ) = HC(� )HT
; (25)

That idea was improved by Tong [96], then by Comon

[97]. This algorithm (which is similar to AMUSE the
Tong's algorithm [98]) can be found in details in [23],

[99]: Comon suggested the construction of two matrices

using two sets of parameters �� and �� :

�1 =
X
�

���(� ) (26)

�2 =
X
�

���(� ): (27)

Now, using a factorization algorithm, one can �nd two

other matrices R and U such that

�1 = RR
h
R�1�2R

�h = U�
2
Uh

: (28)

U is the matrix of the eigen-vectors and � is a diago-

nal matrix of the eigen-values. One can freely choose

the parameters �� and �� with the condition that we

have a maximumdistance among the eigen-vectors cor-
responding to � (one should mention that the choice

of these parameters, to respect that condition, is not

clear). Finally the matrix H is estimated up to a per-
mutation and a full rank diagonal matrix by H = RU.

Belouchrani [78], [100], [101] proposed another method

based also on the approximatively conjoint diagonal-

ization [35], [36]. The conjoint diagonalization of k ma-
trices Ml; here l = 1; : : : ;K is the matrix V which

minimize the following criterion:

C(V) = �
X
l;i

jV h

i MlVij2; (29)

where Vi is the ith column of V. We should mention

also that Amari et al. proposed an algorithm to sepa-
rate temporally correlated signals [81], [102].

Finally, Pham and Garat [57], [94] proved, using the

likelihood maximization method, the existence of opti-

mum �lters to separate the sources. Their likelihood
function L� is found using the asymptotic convergence

of the discrete Fourier transform (DFT) dS(n) of the in-

dependent sources to Gaussian ones. In fact, the vector
dS(n) (n = 0; :::; �=2) are asymptotically independent

zero-mean Gaussian vectors, with a diagonal covariance

matrix Dg(n=� ) = diag(g1(n=� ); � � � ; gp(n=� )). In ad-
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dition, the function L� can be determined by the loga-

rithm of conjoint pdf dY (n)j
�=2
n=0:

L� = �
1

2

pX
i=1

�=2X
n=0

jeT
i
H�1

dS(n)j2

gi(n=� )
� T lnj detfHgj

here eT
i
is the ith raw of an identity matrix and dY (n)

is the DFT of the vector Y (t):

dY (n) =
1
p
�

X
t=0

� � 1e�j2�nt=�Y (t): (30)

5.1.9 Non Stationary Source Separation

Matsuoka et al. [103], [104] were the �rst to propose

an algorithm to separate the nonstationary sources,

where they assumed that the power ratio of two sources
Es

2
i
(t)=Es2

j
(t) is a function of time and not constant.

It is known that the covariance matrix is a positive def-

inite matrix [34], and that Hadamard inequality [105]

of an arbitrary positive semide�nite matrix R = (rij)
is given by:

pY
i=1

rii >= detfRg; (31)

where the equality is hold i� the matrixR is a diagonal

matrix. Using Eq. (31), it is easy to prove that:

pX
i=1

log rii � logdetfRg >= 0: (32)

Using this nice property and a stochastic Gradient algo-
rithm, the authors separate the sources by minimizing

the following criterion:

Q(G;R(t)) =
1

2
f

NX
i=1

log(Ex2i (t) � log jEX(t)XT (t)jg

where R(t) is the covariance matrix of the estimated

sources. Recently, the authors generalized their crite-

rion to separate convolutive mixtures [106], and applied

it in real world speech separation [107]. In [108], [109],
Mansour and Ohnishi proved that the separation of

non-stationary sources is possible by only using the

SOS.

5.1.10 Geometrical Approach

In [110], [111] the authors proposed an original idea to

separate the sources. That idea is based on the infor-

mation obtained from the geometrical representation
of the observed signals in the observed signal space.

In [112], the authors propose a theoretical study of

their approach and a simple algorithm to separate two
sources can be found. Recently, the authors proposed a

modi�ed version of their algorithm [113], [114] for any

number of sources.

5.2 Convolutive Mixtures

In some applications as telecommunications (radio-
mobiles, GSM) or real world speech processing, one can

not approximate the convolutive mixture by an instan-

taneous one, except for narrow band signals (in this case

the convolutive mixture becomes an instantaneous one
with a complex mixing matrix). Since 1990, few meth-

ods of source separation have been proposed in the case

of convolutive mixtures. These methods were generally
based on high order statistics [116]{[120].

5.2.1 High order Statistics

The �rst algorithm for convolutive mixture using HOS
was proposed by Jutten et al. [116]. That algorithm

deals with two sensors, two sources and the channel

are considered as �nite impulse response (FIR) �lters

[121]. To estimate the parameters of the channel �lter,
the authors generalize their previous criterion, which

dealt with instantaneous mixture [6]. In fact, they use

the cancellation of the cross-moments but at di�erent
instants:

E(f(xi(n)g(sj(nk))) = 0 (33)

It was proved later that this algorithm can be improved

by using the cross-cumulants instead of moments [7],

[117]). Charkani [122] improved the same algorithm by
searching the optimal functions f and g.

5.2.2 Frequency Approaches

At �rst view, it seems from (3) that the convolutive
mixture of real signals problem can be transformed to

an instantaneous mixture of complex problem using

Fourier transformation:

Y(z) = H(z)X(z); (34)

The last equation is similar to the instantaneous model
(5). Unfortunately, the problem is not so easy due to

the permutation indeterminacy. In the instantaneous

mixture, the permutation shall not be regarded as a

great problem, but in the convolutive case that means
the sources cannot be obtained by simply adding the

separated band of frequency (the frequency band sepa-

rated at the same output can be for di�erent signals).
Once we separate the mixture using Fourier transforma-

tion and narrow band �lter, we must perform a post-

separation processing algorithm [123].

To solve this problem, Capdevielle [123], [124] found the
separated frequency band corresponded to each sources

by using the correlation properties estimated over a

slippery window of the output sources.
For the separation of seismic signals, Thirion et al.

[9], [125] proposed another approach using the phases

information and a likelihood criterion [87]. Concerning
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the permutation problem, they suggest that the sepa-

rated frequency band of the same signal can be obtained

by minimizing the uctuation phases in the frequency
domain.

For the same problem, Charkani and H�erault [126]

prove that the separation of the convolutive mixture
can be realized using a criterion of fourth order cross-

cumulants which should be applied in the frequency

domain.

5.2.3 Second Order Statistics

For the separation of convolutive mixture by only us-
ing the SOS, one can �nd two di�erent strategies of

research:

� It was proved in [127], [128] that the separation of

FIR strictly causal channel can be carried out using
the SOS applied to di�erent instants.

� When the number of sources are strictly less than

the number of sensors, p < q, one can used a sub-

space approach. The subspace approach leads gen-

erally to very elegant algorithms from theoretical
point of view, but in general case, their conver-

gence is relatively slow due to the minimization of

large size matrices. We can �nd two di�erent types
of subspace methods:

{ The subspace approach is quite new in solving

the blind identi�cation problem [129]{[132].

Using similar approach, it is proved [133]{[136]
that the separation of convolutive mixture can

be realized by only using the SOS and some

adding assumptions [137], [138] on the chan-

nel H. In the general case, It was proved
[137], [139]{[141] that by only using second-

order statistics, we can reduce the convolutive

mixture problem to an instantaneous mixture;

then in the second step, we should only sep-
arate sources consisting of a simple instanta-

neous mixture (typically, most of the instanta-

neous mixture algorithms are based on fourth-
order statistics).

When the columns of the mixing matrixH(z)

have di�erent degreesy, the separation of a

convolutive mixture can be achieved by only
using SOS [134], [135].

{ Using a subspace representation, Delfosse and
Loubaton [142] proved that the separation of

a convolutive mixture can be reduced to an

instantaneous mixture by minimizing a lin-
ear prediction error (SOS); then in the second

step, they use HOS to separate the residual

instantaneous mixture. To this purpose, they

yThe degree of a column is de�ned as the highest degree
of the �lters in this column.

assume that the �lter H(z) is a causal, ratio-

nal and full rank �lter, 8z. In other words,

they prove that the innovations signals of the
sources are the normalized innovation signals

of the observed signals. In addition, they

prove that these innovations can be obtained
by only using SOS up to an orthogonal non-

polynomial matrix U. For the identi�cation

of U; one must use HOS [73].

5.3 Applications

As we mentioned in the introduction of this paper, blind

separation of sources is an interesting problem because

one can �nd it in many di�erent situations and appli-

cations [143]:

1. In [45], the authors use ICA to separate electro-

cardiographic signals: the sources are assumed to

be the heartbeat of a mother and the heartbeat of
her foetus.

2. In [12], [13], the authors are interested as well in
the separation of EEG signals.

3. The ICA also used to study other bio-medical sig-

nals as in [144].

4. Some authors use this problem to speech enhance-

ment [145].

5. Desodt et al. [146] apply complex independent

components analysis to the separation of radar sig-
nals. In addition, in [11] it was used for airport

surveillance.

6. One can also �nd the blind separation in radio-

communication �eld, especially for mobile-phones

(SDMA, Spatial Division Multiple Access), or free-
hand phone application [122].

7. Thirion et al. [8], [125] try to separate a seismic
signals.

8. In [147] the authors try to separate the vibrations

of rotating-machines, to control these machines.

Recently, Rotatingmachine vibration analysis with

second-order independent component analysis, was
proposed by Ypma and Pajunen [148].

9. D'Urso and Cai [10] use sources separation method

applied to nuclear reactor monitoring.

10. This model was used also to improved multi-tag

radio-frequency identi�cation systems based on

new source separation neural networks [149]{[152].

11. Blind source separation of real world signals [153],

[154].

12. This model was used to achieve an adaptive separa-
tion of mixed brod-band sound sources with delays

by using a beamforming H�erault-Jutten network

[155].

13. In [156], the authors propose a solution for discrim-
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inate several optical sources by means of modi�ed

optical tracker and blind separaion of sources algo-

rithms.

14. The ICA was used [157] to improve the on-line per-
formance of information-maximization-based blind

signal separation.

15. To extract the independent component of natural

images, the authors of [158] used fourth-order cu-

mulants algorithms.

16. The ICA was used also in some visual image com-
munication systems [159].

17. To separate mixing images, Cichoski et al. [160]
propsed a multi-layer neural networks with a lo-

cal adaptive learning rule for blind separation of

source signals.

18. Some algorithms were implemented using digital

circuits [161], [162] or VLSI [163].

6. Conclusion

In this paper, we presented a survey of source separa-

tion problem, applications and the major methods and

approaches. To conclude our paper, we must stress that

in most studies three assumptions are fundamentals:
The �rst two assumptions concern the sources: they

should not be Gaussian signals (or at most one) and

should be statistically independent from each others.
The third is about the transmission channel: whether

it is linear or not, memoryless, convolutive, with more

sensors than sources, etc.

Most of the algorithm used higher order statistics.
Moreover, the major problem consisted on the estima-

tion of the HOS. To estimate the cumulant and the

moments, most authors use the Leonov-Shiryayev for-
mulas, see [43], [164]{[168].

We must also mention that batch algorithms to blind

separation are generally faster than the adaptive ones,

although the last ones are more robust against additive
noise or estimation error (some stability studies were

presented in [169]{[176]). Some author prefer to use

the Nonlinear PCA criterion and maximum likelihood

in independent component analysis [67].
To �nish this paper, we would like to mention a part of

the preface of the 1999 ICA proceedings [177]:"15 Years

of research: The case of simple instantaneous mixtures
now is well understood, but dealing, with convolutive

mixtures is still challenging and the issue of non-linear

mixtures has hardly been addressed. Regarding appli-

cations, a lot remain to be done to turn the ideas of
source separation into a broadly accepted methodology

addressing real world signal processing and data anal-

ysis problem." Cardoso, Jutten & Loubaton.
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