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Abstract

In various studies on blind separation of sources, one assumes that

sources have the same sign of kurtosis. In fact, this assumption seems very

strong and in this paper we studied relation between signal distribution

and the sign of the kurtosis. A theoretical result has been found in a

simple case. However, for more complex distributions, the kurtosis sign

cannot be predicted and may change with parameters. The results give

theoretical explanation to tricks, like non-permanent adaptation, used in

non stationary situations.
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1 Introduction

In various works [9, 5, 4, 3, 10, 2] concerning the problem of blind separation
of sources, authors propose algorithms whose efficacy demands conditions on
the source kurtosis, and sometimes that all the sources have the same sign of
kurtosis. In fact, this assumption seems very strong and in this paper we studied
relation between signal distribution and the sign of its kurtosis.

2 Definition and Properties

Let us denote by x(t) a zero-mean random process and by p(x) its probability
density function (pdf).



Definition 1: The kurtosis K[p(x)] is the normalized fourth-order cumulant
of the process [1, 8]:

K[p(x)] =
Cum4(x)

E(x2)2
=

E(x4) − 3E(x2)2

E(x2)2
, (1)

where E() denotes the average.
If the process is not zero-mean, the equation (1) becomes [8]:

K[p(x)] =
Cum4(x)

E(x2)2
=

E(x4) − 3E(x2)2 + 12E(x)2E(x2) − 4E(x)E(x3) − 6E(x)4

E(x2)2
.

(2)
Clearly, the kurtosis has the same sign than the fourth-order cumulant, then
we will only study the sign of the fourth-order cumulant.

Let ks(x) denote the kurtosis sign. Some properties can be easily derived :

1. The kurtosis sign, ks(x), is invariant by any linear transformation. From
(2), we deduce:

Cum4(ax + b) = a4Cum4(x), (3)

then ks(ax + b) = ks(x).

2. If we express the pdf p(x) as a sum of two functions: p(x) = pe(x)+po(x),
where pe(x) is even and po(x) is odd, then:

• ks(x) only depends on the even function pe(x),
because the fourth-order cumulant (1) depends only on the fourth and
second-order moments (so it only depends on the even moments).

• The even function pe(x) has the properties of a pdf:

pe(x) ≥ 0, ∀x

and

∫
IR

p(x)dx =

∫
IR

pe(x)dx = 1.

Therefore, in the following, the study may be restricted to a zero-mean process
x(t) whose the pdf p(x) is even and has a variance σ2

x = 1. Clearly from
(1), it is clear that the kurtosis of a Gaussian distribution is equal to zero.
Moreover, for generalized exponential distributions p(x) = K1 exp (−K2|x|α)
(Ki are normalization parameters), it is easy to show that for α > 2, the kurtosis
is negative and for α < 2, the kurtosis is positive. For other distributions,
the kurtosis may be positive or negative (see table 1). But intuitively, the
sign of the kurtosis is related to the comparaison between p(x) and Gaussian
distribution. As examples, in the table 1, we computed ks(x) for four well
known distributions.

Usually, many authors only consider asymptotic properties of the distribu-
tions. It leads to the following definition.
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Signal Cum4(x) ks(x) fig.

Uniform a4+b4+6a2b2+3.5(a3b+b3a)
−30 − 1.a

Discrete −N(N+1)(2N2+2N+1)
15 − 1.b

Gamma 26
3 , if σx = 1 + 1.c

Cosine 192
π4 − 2 − 2α4 − 1.d

Table 1: known distributions.

Definition 2: A pdf p(x) is said over-Gaussian (respectively sub-Gaussian),
if:

∃ x0 ∈ IR+ | ∀x ≥ x0, p(x) > g(x) (4)

(respectively p(x) < g(x)), where g(x) is the normalized Gaussian pdf.
From the previous examples, it seems that ks(x) is positive for over-Gaussian
signals and negative for sub-Gaussian signals.

3 Theoretical result

3.1 A simple Theorem

Let us consider p(x) an (even) pdf and g(x) a zero-mean normalized Gaussian
pdf.

Theorem 1 If p(x) = g(x) have only two solutions than:

Ks(x) > 0 ⇐⇒ p(x) is over-Gaussian

Ks(x) < 0 ⇐⇒ p(x) is sub-Gaussian

The demonstration is given in appendix A. This theorem shows the intuitive
claim, given in the previous section, is true under the specific condition of the-
orem 1. So, this condition is satisfied for the generalized exponential distribu-
tions. Additionally, this result can be generalized for all unimodal distributions.

3.2 General cases

In the general case, if p(x) = g(x) has more than two solutions, then there is
no rule to predict ks(x). More precisely, over-Gaussian as well as sub-Gaussian
pdfs can lead to positive as well as negative sign of kurtosis. As an example, let
us consider the pdf is a sum of two exponential functions:

p(x) =
b

4
(exp(−b|x − a|) + exp(−b|x + a|)) (5)
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Figure 1: pdf of four random process of table 1

Figure 2 shows the general form of p(x).

Figure 3 (a) and figure 3 (b) give examples (with different parameters a and
b) where ks(x) > 0 and ks(x) < 0, respectively. On these figures, we show
also the normalized Gaussian pdf g(x): the previous theorem is not applicable,
because there are morethan one solution (in IR+) to the equation p(x) = g(x).

Using the equation (5), it is easy to compute:

E(x4) = a4 +
12

b2
a2 +

24

b4
(6)

E(x2) = a2 +
2

b2
(7)

From equations (6) and (7), we can derive the kurtosis of (5):

K[p(x)] = 2
6 − (ab)4

4 + 4a2b2 + a4b4
, (8)

Then by choosing adequate values of the parameters a and b, it is possible to
change ks(x). From (8), it is clear that:

K[p(x)] ≥ 0 if 0 < ab ≤ 4
√

6.
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Figure 3: Comparaison of exponential pdf p(x) of (5) and the normalized Gaus-
sian pdf g(x) for various values of the parameters a and b.

K[p(x)] < 0 if ab >
4
√

6.

With respect to the definition (4), p(x) is an even over-Gaussian pdf, and nev-
ertheless ks(x) is not always negative, but may change according to the values
of the parameters a and b.

3.3 Case of bounded pdf

In practical cases, we may consider that artificial signals (for instance telecom-
munication signals) are bounded, and consequently their pdf are sub-Gaussian.
It is after claimed that the kurtosis of such signals is negative. We show in this
subsection that this claim is wrong.

Let us consider for instance quaternary sources x(t) (see Fig 4), whose the
fourth order cumulant is

Cum4(x) = a4p(1 − 3p) − 6a2b2p(1 − p) − b4(1 − p)(2 − 3p). (9)

It is clear that the sign of Cum4(x) may change with the values of the
parameters. For example let be a = 0, then Cum4(x) < 0 if p < 2/3, and vice
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Figure 4: Pdf of quaternary sources.
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Figure 5: Two exemples of x-limited pdf

Finally, let us consider the exemples in figure 5. It is easy to evaluate the
kurtosis of these signals (Fig 5). The kurtosis of first signal (Fig 5 (a)) can be
written as:

K(p2(x)) =
α

5σ4
x

(b5−a5)+
β

σ4
x

c5− α2

3σ4
x

(b3−a3)2− 3β2

σ4
x

c6−2
αβ

σ4
x

(b3−a3)c3, (10)

with the normalization condition:

α(b − a) + β = 1. (11)

The kurtosis of second signal (figure 5 (b)) is equal to:

K(p3(x)) =
α

5σ4
x

(b5 − a5) +
β

5σ4
x

(d5 − c5)

− α2

3σ4
x

(b3 − a3)2 − β2

3σ4
x

(d3 − c3)2 − 2
αβ

3σ4
x

(b3 − a3)(d3 − c3), (12)

with the normalization condition:

α(b − a) + β(d − c) = 1. (13)
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For scale reasons, we do not draw directly K(p(x)) but:

K⋆(p(x)) =
1

2
[K(p(x))+ | K(p(x)) |]. (14)

Thus, if K(p(x)) > 0, K⋆(p(x)) = K(p(x)), otherwise, if K(p(x)) ≤ 0,
K⋆(p(x)) = 0. Then, we remark that the sign of the kurtosis may be easily
controlled with adequate values of the pdf parameters (see Fig 6).
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(a) K⋆(p2(x)), with a = 2 and b = 9. (b) K⋆(p3(x)), with a = 0.9, b = 1.1 and d = 9.

Figure 6: Representation of K⋆(p(x)) according to parameters c and α

4 Experimental results

In the case of real signals, the kurtosis estimation will be done on finite moving
windows [7]. For stationary signals, the window may be very long. But for
non-stationnary signals (speech signals for exemple, see Fig 7), the length of
the window must be short enough (about 20-30 ms i.e. 2000 to 3000 samples at
Fs = 10KHz).
Moreover, in case of non stationary signals, the pdf can vary a lot : for instance,
silent periods in speech signals imply a peak in the pdf around x = 0 (see figure
7).
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Figure 7: Speech signal: Camp3
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According to the size of the window, and its location, we observe changes
in the kurtosis sign. Figure 8 shows the kurtosis time evolution of the speech
signal of figure 7. The kurtosis is estimated on 500-sample windows, every 50
samples. We remark that the kurtosis is negative during a silent period, and it
becomes positive during the speech transient.
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Figure 8: The estimated kurtosis of speech signal ”Camp3”

Experimentally, we remark that: for speech signal, the kurtosis sign fluctu-
ations can be eliminated by estimating the kurtosis on all the samples excepted
those of silent periods (see Fig 9).
This result can explain that the non-permanent learning (freezing the parameter
estimation) in speech separation algorithms [10] enforces source pdf to have a
negative kurtosis sign and then allows algorithm convergence.
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(a) Speech signal ”Camp3” without its silent periods. (b) Estimated pdf of this signal.

Figure 9: Experimental results

5 Conclusion

In the paper, we point out some relations between pdf and kurtosis sign. First,
we show the kurtosis sign is not modified by any scale or translation factors,
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and it only depends on the even part of the pdf.

Usually, people associates the kurtosis sign of a distribution p(x) to its
over-Gaussian or sub-Gaussian nature. We prove that this claim is only relevant
for unimodal pdf p(x) having only two intersections (in IR) with the Gaussian
pdf.

In the general case, even for bounded pdf, we show by a few examples that
the kurtosis sign can be positive or negative according to the pdf parameters.

From a practical point of view, kurtosis sign of non stationary signals, which
must be estimated on short moving windows, can change. A previous experi-
mental study proves that the kurtosis sign of speech signal can be affected by
the silent period [6]. Additionally, this paper gives a theoretical explanation
to the necessity and the efficacy of intermittent adaptation which is used for
separation of non stationary sources [10].

A Proof of Theorem 1

Let us consider that for x > 0, there is one and only one intersection point ρ
between p(x) and g(x).

It is known that the fourth-order cumulant of a Gaussian signal is zero. As
a consequence, we can write:∫

IR

x4g(x)dx = 3

∫
IR

x2g(x)dx = 3. (15)

Using (1) and the unit variance signal, the kurtosis can be rewritten as:

K[p(x)] =

∫
IR

x4(p(x) − g(x))dx. (16)

According to result of section 2, we may only consider the even pdf. In addition,
we just may study the sign of Υ:

Υ =
1

2
K[p(x)] =

∫
∞

0

x4(p(x) − g(x))dx

=

∫ ρ

0

x4(p(x) − g(x))dx +

∫
∞

ρ

x4(p(x) − g(x))dx. (17)

Let us consider that the pdf p(x) is an over-Gaussian signal ( p(x) > g(x), when
x → ∞). Then, the sign of p(x) − g(x) remains constant on each interval [0,ρ],
and [ρ, ∞]. Using the second mean value theorem, Υ can be rewritten as:

Υ = ξ4

∫ ρ

0

(p(x) − g(x))dx + λ4

∫
∞

ρ

(p(x) − g(x))dx

= λ4

∫
∞

ρ

(p(x) − g(x))dx − ξ4

∫ ρ

0

(g(x) − p(x))dx (18)
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where:
0 < ξ < ρ < λ. (19)

In fact, p(x) and g(x) are both pdf, so we have:

∫
∞

0

(p(x) − g(x))dx =

∫ ρ

0

(p(x) − g(x))dx +

∫
∞

ρ

(p(x) − g(x))dx = 0.(20)

From (20), and taking into account that p(x) is over-Gaussian, we deduce:

∫
∞

ρ

(p(x) − g(x))dx =

∫ ρ

0

(g(x) − p(x))dx > 0. (21)

Using (18), (19) and (21), we remark that:

Υ = (λ4 − ξ4)

∫
∞

ρ

(p(x) − g(x))dx > 0. (22)

Finally, if p(x) is an over-Gaussian pdf (with the assumption of an unique in-
tersection positive point between p(x) and g(x)), then its kurtosis is positive.
Using the same reasoning, we can claim that a sub-Gaussian pdf has a negative
kurtosis.
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