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Abstract

The algorithms of blind separation of sources, in the general case and
for instantaneous mixtures, are based on high-order statistics; most of
them use the fourth-order statistics. For an instantaneous mixture of
only two sources, we proposed in [14] an algorithm of blind separation of
sources. The separation was achieved by minimizing the cross-cumulant
(2x2) of the two output signals. The minimization of that cross-cumulant
was achieved using a gradient algorithm. In this paper, we derive a new
cost function which is more general than the first one, also based on the
cross-cumulant (2x2) of the output signals. This new algorithm deals with
Multiple Inputs and Multiple Outputs (MIMO) and uses a Levenberg-
Marquardt method for the minimization of the cost function. The actual
algorithm is very fast; the criterion convergence is attained in less than
50 iterations. In addition, it yields good results even in the case of about
300 signal samples. Good experimental results were obtained even with
five stationary signals.
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1 Introduction

The blind-separation-of-sources problem involves in retrieving the sources from
the observations of unknown mixtures of unknown sources. In general case,
authors assume that the sources are non-Gaussian signals and statistically
independent of one another.
The blind separation of sources was initially proposed by Hérault et al. [10, 11].
It has been one of the recent and important signal processing problems. Most of
the blind separation algorithms deal with two kinds of mixtures: instantaneous
(memoryless) mixtures [2, 12, 4, 15] and convolutive mixtures (the channel
effects can be modeled by a matrix of filters) [22, 8].
In the general case and in instantaneous mixtures, the fourth-order statistics
are required to separate the sources (see [5, 15]). Recently, for convolutive
mixtures and by using a subspace method [1], it was proven in [9, 16] that
the separation of sources can be achieved by using only second-order statistics.
These subspace algorithms are very elegant from a theoretical point of view,
but are very slow due to the minimization of large size matrices [17].

In this paper, a new cost function for instantaneous mixtures, based on
the cross-cumulant (2x2) of all the output signals, is proposed. A Levenberg-
Marquardt method is adopted for the minimization of the cost function. So,
even though the new algorithm deals with Multiple Inputs and Multiple Outputs
(MIMO), the convergence of the algorithm is obtained within a small number
of iterations.
To avoid some possible spurious solutions, we must assume that the sources
have the same sign of kurtosis1. In fact, if the sources do not have the same
sign of kurtosis, then separation-solutions may not be obtained by minimizing
the cross-cumulant (2x2)[14]. Similar assumptions regarding the sign of kurtosis,
have already been made by many authors in [21, 13, 7]. On the other hand, it
was proven in [14] that minimization or cancellation of a cost function based on
the cross-cumulant (2x2) leads to a set of solutions whose spurious ones can be
simply canceled by using a decorrelation. In the following, let us assume that
this assumption is satisfied.

2 Channel model

As shown in figure 1, at any time n, and with the help of N sensors, N
instantaneous mixtures yi(n) of the N unknown zero-mean sources xi(n),
assumed to be statistically independent, are observed. In addition, we assume
that the unknown mixture matrix is a N × N regular matrix.

Taking M as the mixture matrix, Y as the mixture vector with additive
noise, X as the source vector, and Ng as the noise vector (see figure 1), we can

1the kurtosis of a signal is its fourth-order cumulant normalized by the square of its second-
order cumulant.
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Figure 1: Channel model.

write:
Y = MX + Ng. (1)

The separation is achieved by estimating a N × N matrix W satisfying
WM = ∆P, where P is any permutation matrix and ∆ is any regular diagonal
matrix [6]. Let S be the vector of the output signals, then:

S = WY = GX + WNg, (2)

where G = (g(i,j)) is the global matrix, i.e. G = WM. The separation will be
performed when G becomes a general permutation matrix2. At first we consider
the mixture signals without noise (Ng = 0) and will discuss the case with noise,
in section 5.

3 The cost function

In this section, we prove that the N sources can be separated by minimizing
the following cost function:

min
W

{

N
∑

m>n

Cum2
22(sm, sn)} (3)

where sm is the mth output signal. The canceling3 of this cost function, when

the sources have the same sign of kurtosis, is equivalent to N(N−1)
2 independent

equations (see appendix A):

Cum22(sm, sn) = 0 ⇐⇒ g(m,j)g(n,j) = 0 (1 ≤ j ≤ N) and m 6= n (4)

2i.e. G = ∆P, where P is a permutation matrix and ∆ is a regular diagonal matrix.
3The cost function (3) is a positive function and its minimum is zero.
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The canceling of this cost function retains the following properties of the global
matrix G:

• Proposition 1: All the column vectors of the global matrix G

have at most one coefficient not equal to zero.
In fact, let us suppose that one coefficient g(m,j) in the jth column of G is
nonzero. From the equation (4), we can prove that g(n,j) = 0, ∀ n 6= m.
So all the coefficients (except the mth one) of the jth column of G are
equal to zero.

• Proposition 2: All the row vectors of the global matrix G have

at least one coefficient not equal to zero.

Let us assume that all the principal diagonal elements of the weight matrix
W are equal to one4 (w(i,i) = 1, 1 ≤ i ≤ N ):

w(i,i) = 1 =⇒ Wi 6= 0 (1 ≤ i ≤ N ) (5)

where Wi is the ith row of the weight matrix W. Now, we can prove that
the global matrix cannot have a zero row. In fact, let us denote by Mj

the jth column of the mixture matrix M and let us assume that the ith
row of G is equal to zero, so:

g(i,j) = WiMj = 0 1 ≤ j ≤ N, (6)

or the vectors Mj (1 ≤ j ≤ N) are linear independent vectors and nonzero
because the mixture matrix M is a regular matrix and on the other hand,
all the vectors Wi are not equal to zero (see equation (5)). So it is impos-
sible to satisfy equation (6), because we cannot find a real vector which is
simultaneously nonzero and orthogonal to N independent linear vectors
in IRN at the same time. Finally, the global matrix cannot have a

zero row.

• Proposition 3: The global matrix is a general permutation ma-

trix.

By using propositions 1 and 2, we find that the global matrix G can
have at most one nonzero coefficient in the same column and at least one
nonzero coefficient in the same row. These two propositions make the
global matrix a general permutation matrix.

4 The new algorithm

It is clear that the cost function (3), proposed in this paper, is not a simple
square error function. As a consequence, this function may not be minimized
using a LMS algorithm, a stochastic gradient or a conjugate gradient5 method.

4It is easy to satisfy this constraint, by putting the coefficients w(i,i) = 1 (1 ≤ i ≤ N) in
all the iterations of our algorithm.

5The conjugate gradient method is used to find the generalized eigenvector corresponding
to the minimum generalized eigenvalue of a semidefinite Hermitian matrix [3]

4



For that reason, the cost function (3) will be minimized using the Levenberg-
Marquardt method. On the other hand, by choosing the Levenberg-Marquardt
method, the convergence of our criterion will be faster.
The Levenberg-Marquardt method consists in minimizing an error function with
respect to some vector V [20, 24] (see appendix B). In this section, we discuss
how we can apply the Levenberg-Marquardt method to our case where the cost
function (3) should be minimized with respect to the N × N matrix W.
Let V = Col(W), where Col is the operator that corresponds the vector V to
the matrix W. In other words, the relationship between the components of V
and the components of W becomes:

w(m,n) = v(m−1)N+n 1 ≤ m ≤ N and 1 ≤ n ≤ N. (7)

It is clear that the cost function (3) is composed of N(N−1)
2 different cross-

cumulants (Cum22(sm, sn), 1 ≤ n < m ≤ N). Let us denote by Φ =
(φ1, φ2, . . . , φ(N(N−1)/2))

T the function vector (see appendix B), each compo-
nent of Φ must correspond to one different cross-cumulant. In the Levenberg-
Marquardt method, the vector V (or indirectly the matrix W) is adapted by
using the Jacobian matrix J(V ) = (J(i,j)) = ∂Φ

∂V of the vector Φ with respect to
V (or W, see appendix B). After some calculations, we can easily link the com-
ponents of Φ to the different cross-cumulants using the following relationship:

φ(m2−3m+2n+2)/2 = Cum22(sm, sn)

= E(s2
ms2

n) − E(s2
m)E(s2

n) − 2E2(smsn), (8)

where E(.) denotes the mathematical expectation and 1 ≤ n < m ≤ N . By
using equation (2), equation (8) can be rewritten as:

φ(m2−3m+2n+2)/2 =
∑

ijkl

w(m,i)w(m,k)E(yiyjykyl)w(n,j)w(n,l)

−WmRYWT
mWnRYWT

n − 2WmRYWT
n WmRYWT

n ,(9)

where Wm is the mth row of W and RY is the covariance matrix of Y (RY =
E(Y Y T )). To calculate the Jacobian matrix J(V ), we derive at first equation
(9) with respect to the row of W:

1

2

∂φ(m2−3m+2n+2)/2

∂Wl
= δlm[WmE(s2

nY Y T ) − WmRY(WnRYWT
n ) − 2WnRY(WmRYWT

n )]

+δln[WnE(s2
mY Y T ) − WnRY(WmRYWT

m) − 2WmRY(WnRYWT
m)],(10)

where δlm is the Kronecker symbol6 and 1 ≤ n < m ≤ N . Let us denote by

J(i,j) the general component of the N(N−1)
2 × N2 Jacobian matrix J(V ), then

by using equations (7) and (10) we obtain:

6The Kronecker symbol δlm = 1 if and only if l = m, otherwise δlm = 0.
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J((m2−3m+2n+2)/2,(l−1)N+k) = δlm[Wmρ(n,k) − (WnRYWT
n )WmR(Y,k) − 2(WmRYWT

n )WnR(Y,k)]

+δln[Wnρ(m,k) − (WmRYWT
m)WnR(Y,k) − 2(WnRYWT

m)WmR(Y,k)](11)

1 ≤ n < m ≤ N, 1 ≤ k ≤ N and 1 ≤ l ≤ N,

where ρ(m,k) (resp. R(Y,k)) is the kth column of E(s2
mY Y T ) (resp. RY). Finally

the weight matrix should be adapted, for minimizing the cost function, by:

Vk+1 = Vk − [J(Vk)T J(Vk) + λkI]
−1J(Vk)T Φ (12)

where Vk = Col(Wk) is the weight vector at the kth iteration, I is the iden-
tity matrix, and λk is a parameter in the Levenberg-Marquardt method (see
appendix B).

5 With Gaussian noise

Suppose that the noise Ng = (n1, n2, . . . , nN )T is a Gaussian zero-mean signal
and it is statistically independent of the sources. By using equation (2), the
cross-cumulant (2x2) of any two output signals can be evaluated as:

Cum22(sm, sn) = Cum(sm, sm, sn, sn)

= Cum(
∑

i

(g(m,i)xi + w(m,i)ni),
∑

j

(g(m,j)xj + w(m,j)nj),

∑

k

(g(n,k)xk + w(n,k)nk),
∑

l

(g(n,l)xl + w(n,l)nl))(13)

By using the multilinearity properties of the cumulant [23] and the independence
between the sources and the noise, equation (13) can be rewritten as:

Cum22(sm, sn) =
∑

i,j,k,l

g(m,i)g(m,j)g(n,k)g(n,l)Cum(xi, xj , xk, xl)

+
∑

i,j,k,l

w(m,i)w(m,j)w(n,k)w(n,l)Cum(ni, nj , nk, nl).

The second term on the right-hand side becomes zero because the fourth-
order cross-cumulant of the Gaussian noise Ng is equal to zero (i.e.
Cum(ni, nj, nk, nl) = 0). Thus we have the same cost function as the one
without noise. Therefore, (as proven in section 3) by canceling the cost function
(3), the weight matrix W becomes W = ∆PM−1 (i.e. the global matrix G is
a general permutation matrix).
Each output signal consists of a source signal and a Gaussian noise both of which
are permuted and scaled by a constant value. We can summarize as follows:

Cost = 0 ⇒ W = ∆PM−1

S = WY = ∆PM−1MX + ∆PM−1Ng

= ∆PX + ∆PM−1Ng (14)

Now, the problem becomes a classic identification problem of a signal with noise.
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6 Experimental results

The experimental study shows that the algorithm proposed in this paper, is
very fast:
In the case of five stationary signals N = 5, good results are obtained (about
-23 dB at most of the channels, see figure 3). The five sources used in this
simulation are as follows:

• The first two sources are white noise, zero-mean signals.

• The third source is colored noise obtained by filtering white noise using a
pass-band MA filter A(z) = 1−0.2z−1−0.4z−2+0.3z−3+0.5z−4−0.6z−5.

• The fourth source is a triangular signal.

• The fifth source is a sine signal.

The cumulant is adaptively estimated according to [18] and using about 1000
samples. The convergence is obtained after 20 iterations (see figure 2).
In the general case, the convergence can be obtained in less than 50 iterations.
Satisfactory results are obtained when the sources are stationary signals and
the number of sources is less than 7.

50 100 150 200
iterat

.2

.4

.6

.8

1
crit

Figure 2: Criterion convergence.
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Figure 3: The separation of five stationary signals: First column contains the
sources, the second column contains the mixture signals and the last one contains
the estimated signals.
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Unfortunately, in the case of nonstationary signals, the performance of the
actual version of our algorithm is not satisfactory when the number of sources
is greater than 3. However, satisfactory results are obtained (the crosstalk is
about -20 dB) in the case of two nonstationary sources (see figures 4 and 5).
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Figure 4: Nonstationary signals: First column contains the sources, the second
column contains the mixture signals and the last one contains the estimated
signals.

7 Conclusion

In this paper, a fast algorithm for blind separation of sources is proposed. This
algorithm minimizes a cost function based on the cross-cumulant (2x2), using

9



2000 4000 6000 8000 10000n

-2

-1

1

2

X1 Firth source

2000 4000 6000 8000 10000n

-4

-2

2

4
Y1 Firth mixture signal

2000 4000 6000 8000 10000n

-2

-1

1

2

S1 Firth estimated signal

2000 4000 6000 8000 10000n

-2

-1

1

2

X2 Second source

2000 4000 6000 8000 10000n

-3

-2

-1

1

2

3

Y2 Second mixture signal

2000 4000 6000 8000 10000n

-2

-1

1

2

S2 Second estimated signal

Figure 5: Two nonstationary signals (the sources are: an English word ”Good
Morning” and a Japanese Word ”Ohayagosaimas”).

the Levenberg-Marquardt method. The experimental study proves that the
convergence is very fast (in general cases less than 50 iterations are needed to
attempt the convergence).
In many experiments, good results are obtained even if a small number of sam-
ples are used (for stationary signals, the algorithm may converge by using only
about 300 samples). Also in the case of stationary signals, this algorithm can
separate more than two sources.
Up to now, we obtained satisfactory results in the case of two nonstationary
signals: the crosstalk is about -20 dB. In the general case, when the sources are
more than two signals, this algorithm may not converge due to the facts that

1. There may be silent periods in the speech signal, and

2. The statistics of the speech signal depend on time and on the wide of the
estimation windows.

Actually, we plan to improve this algorithm to separate more than two nonsta-
tionary sources.
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A Evaluation of the cross-cumulant (2x2)

The Cum22(sm, sn) of two zero-mean signals is given by [19]:

Cum22(sm, sn) = E(s2
ms2

n) − E(s2
m)E(s2

n) − 2E(smsn)2. (15)

Equation (2) without noise makes sm =
∑

i g(m,i)xi. To evaluate the cross-
cumulant (15), the mathematical expectation E(s2

ms2
n) is calculated at first:

E(s2
ms2

n) = E((
∑

i

g(m,i)xi)
2(

∑

i

g(n,i)xi)
2) =

∑

i,j,k,l

g(m,i)g(m,j)g(n,k)g(n,l)E(xixjxkxl).

(16)
The sources are assumed zero-mean independent signals. As a consequence, we
have:

E(xixjxkxl) =























PiPk

{

if i = j 6= k = l
or i = l 6= j = k

PiPj if i = k 6= j = l
γi if i = j = k = l
0 otherwise.

(17)

Where Pi = E(x2
i ), and γi = E(x4

i ). From equation (16) and (17), we prove
that:

E(s2
ms2

n) =
∑

i

g2
(m,i)g

2
(n,i)γi +

∑

i6=j

PiPjg(m,i)g(n,j)(g(m,i)g(n,j) + 2g(n,i)g(m,j)).

(18)
It is easy to prove that the second-order moment of the output signals are:

E(s2
m) =

∑

i

g2
(m,i)Pi (19)

E(smsn) =
∑

i

g(m,i)g(n,i)Pi (20)

Finally, we can prove, using equations (18), (19) and (20), that:

Cum22(sm, sn) =
∑

i

g2
(m,i)g

2
(n,i)βi. (21)

Where βi = Cum(xi, xi, xi, xi) is the fourth-order cumulant of the source signal.
Let us assume that the source have the same sign of kurtosis (or the same sign
of the fourth-order cumulant βi) and using the relation (21), it is easy to prove
that:

Cum22(sm, sn) = 0 ⇐⇒ g(m,i)g(n,i) = 0 (22)

where 1 ≤ i ≤ N . Equation (22) is symmetrical with respect to m and n. As
a consequence, we consider just the case which 1 ≤ n < m ≤ N . Finally, using
the definition of the cost function (3), we can prove:

Cost = 0 ⇐⇒ g(m,j)g(n,j) = 0 (1 ≤ j ≤ N) and m 6= n (23)
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B The Levenberg-Marquardt method

The Levenberg-Marquardt algorithm [20] can be thought of as a trust-region
modification of the Gauss-Newton algorithm. It can minimize the non linear
least squares problem:

0 = min
V

{f(V ) =
1

2

∑

i

φ2
i (V ) | V ∈ IRn} (24)

where V = (v1, v2, . . . , vn)T . And let Φ = (φ1, φ2, . . . , φm)T , and λ0 = 10−3.
Finally let us denote by J(V) the m × n Jacobian matrix of Φ:

J(V ) =







∂φ1

∂v1

∂φ1

∂v2

. . . ∂φ1

∂vn

...
...

...
...

∂φm

∂v1

∂φm

∂v2

. . . ∂φm

∂vn






(25)

The Hessian of (24) is a combination of first and second-order terms [24]:

∇2f(V ) = J(V )T J(V ) +
∑

j

φj∇
2φj(V ). (26)

In practice the Gauss-Newton approximation of the Hessian is used, i.e. H(V ) =
J(V )T J(V ).
The kth search direction is defined as the solution of:

[H(Vk−1) + λk−1I]Dk = −J(Vk−1)
T Φ(Vk−1) (27)

and Vk = Vk−1 + Dk. Finally:

• If f(Vk) < f(Vk−1) than λk = λk−1/2 and Vk takes the place of Vk−1 for
the next iteration.

• Else λk = 2λk−1 and we must use the same value of Vk−1 for the next
iteration.

The algorithm will be stopped when f(Vk) is very small or λk is very large.
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