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Abstract

In the problem of blind separation of sources, we define usually a func-
tion ( cost, contrast, . . . ) and the solution is based on the search of the
extremum of that function. The choice of cost function is then very im-
portant, both to have simple computation and to guarantee unicity and
convergence to a good solution.
In this paper, in the case of instantaneous mixtures of 2 sources, we study
two cost functions based on the fourth order cumulant and we prove theo-
retically and experimentally that the cross cumulant is a simple and good
cost function.

1 Introduction

1.1 Problem description

The problem of blind separation of sources has been first introduced in 1985
by Hérault et al. [10] in the case of instantaneous mixtures, from the biological
problem of movement coding. The algorithm was based on an independence
test approximated by high-order cross-moments of every pair of outputs. The
moments were introduced by means of products of odd non-linear functions in
an adaptation rule. In similar problems, the role of non-linear functions has
been studied by Féty [9]. However, limitations of the rule based on high-order
moments have been proved by Comon et al. [7] and Sorouchyary [15] : if the
probability density functions of sources are not even, the algorithm leads to
spurious solutions.
So approximating independence test with high-order moments, although very
simple, is not very efficient. In fact, let us come again to the definition of
independence :
Two random variables ui and uj are independent if :

p(ui, uj) = p(ui)p(uj). (1)

Denoting ψ(ui, uj) the second characteristic function of p(ui, uj), we can derive
from the relation (1):

ψ(ui, uj) − ψ(ui)ψ(uj) = 0. (2)

By computing Taylor expansion of (2), we get a polynomial equation, whose
the coefficient of term of degree N is called cross-cumulant of order N. If the
random variables are independent, cumulants of any order must be equal to
zero. General expressions of cumulants can be found in Brillinger [2].

For zero mean signals, order-2 cross-cumulants reduces to covariance. At
order 4, there are 3 cross-cumulants :

Cum13(ui, uj) = Mom13(ui, uj) − 3Mom20(ui, uj)Mom11((ui, uj) (3)

Cum22(ui, uj) = Mom22(ui, uj) −Mom20(ui, uj)Mom02(ui, uj)
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−2Mom2
11((ui, uj) (4)

Cum31(ui, uj) = Mom31(ui, uj) − 3Mom02(ui, uj)Mom11((ui, uj). (5)

Of course, using any order cross-cumulants is impossible, therefore we must try
to define simpler but efficient criteria.

In a few studies, authors claim that second order statistics are good candi-
dates. However, these assertion seems to be true only under specific conditions.
In [1], estimation of parameters is driven by a correlation measurement, but after
crossing a discriminatory, which can be for instance a hard limiter. Therefore,
the hard limiter is strongly non-linear and consequently introduced high-order
moments.

In the case of convolutive mixtures, Van Gersen et al. [16] use successfully
second-order moments, but the mixtures are reduced to a delayed coefficient.
On the contrary, for convolutive mixtures modelled by Finite Impulse Response
(FIR) filter, Nguyen Thi et al. [13] experimentally observe that algorithms based
on high-order statistics provide better performances than algorithms based on
second order moments.

In most of works related to Blind Separation of Sources, criteria based on
4-order cumulants are used. For instance, Lacoume and Ruiz [11] estimate the
parameters by maximising the quantity:

d = 1/(Cum2
13(ui, uj) + Cum2

22(ui, uj) + Cum2
31(ui, uj)). (6)

In [3], Cardoso proposed a method based on fourth-order moments, and then
a refined version using fourth-order cumulants [3]. In [5], Comon addressed
the problem by solving a polynomial system of equations expressing the cross-
cumulants of outputs with respect to the cross-cumulants of observations.
In case of instantaneous mixtures as well as convolutive mixtures, Nguyen Thi
et al. [13] proposed algorithms based on cancellation of fourth-order cross-
cumulants Cum13 and Cum31. However, experimental work [14] showed that
for particular signal, spurious solutions are achieved, and it is possible to cancel
these solutions by using the other cross-cumulant Cum22.
Recently, Comon [6] propose another class of criteria, based on a contrast func-
tion, derived from the concept introduced by Donoho [8], and based on entropy
measurement of independence.

It appears clearly that various criteria are currently used in the literature.
The choice of the criteria is then a question of importance that we propose
to address in this paper, in the restricted case of instantaneous mixtures of
two sources. The choice is relevant to prove existence and unicity of solutions,
to simplify algorithm, and also to propose efficient hardware implementations.
In fact, there already exist hardware implementations [17] [4] of the sources
separation algorithm proposed by Jutten and Hérault, but they suffer the same
limitations as the algorithm.
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1.2 Organisation of the paper

The paper is devided in 4 parts. In the second section, we introduced the model
of mixtures and statistcs we will use. In the hired section, we study two cost
functions based on the fourth order cross-cumulants. Theoretically result on the
second cost function is proposed in section four. Finally, The section 5, shows
an algorithm and experimental result.

2 Model equations

2.1 Mixture model

At any time t, we observe, with help of two sensors, two instantaneous mixtures
ei(t) of the two zero-mean sources xi(t), assumed statistically independent. De-
noting M the mixture matrix, we have:

(

e1(t)
e2(t)

)

=

(

m11 m12

m21 m22

) (

x1(t)
x2(t)

)

, (7)

2.2 Separation model

The separation is achieved by estimating a 2x2 matrixW satisfyingWM = PD,
where P is any permutation matrix and D is a diagonal matrix. The outputs
of the matrix W are signals si(t):

(

s1(t)
s2(t)

)

=

(

w11 w12

w21 w22

) (

e1(t)
e2(t)

)

, (8)

The global matrix WM will be denoted G = (gij):

(

s1(t)
s2(t)

)

=

(

g11 g12
g21 g22

)(

x1(t)
x2(t)

)

, (9)

2.3 Equation of moments and cumulants

From the relation (9), we can express cross-moments and cross-cumulants of the
outputs s1(t) and s2(t) with respect to the coefficients gij and cross-moments
and cross-cumulants of the sources x1(t) and x2(t). Of course, the cross-
moments and cross-cumulants of the sources are unknown. Let us denote:

Momkl(s1, s2) = E[sk
1(t)sl

2(t)], (10)

Cumkl(s1, s2) = Cum(sk
1(t)sl

2(t)).

pi = E[x2
i (t)], (11)

γi = E[x4
i (t)], (12)

βi = Cum(x4
i ). (13)
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Then, up to the order 4, taking into account the statistical independence of
the sources, we get the 10 following equations:

Mom01(s1, s2) = Mom10(s1, s2) = 0, (14)

Mom11(s1, s2) = g11g21p1 + g12g22p2, (15)

Mom20(s1, s2) = g2
11p1 + g2

12p2, (16)

Mom02(s1, s2) = g2
21p1 + g2

22p2, (17)

Mom31(s1, s2) = g3
11g21γ1 + 3g11g12(g11g22 + g21g12)p1p2 + g3

12g22γ2,(18)

Mom13(s1, s2) = g11g
3
21γ1 + 3g21g22(g11g22 + g21g12)p1p2 + g12g

3
22γ2,(19)

Mom22(s1, s2) = g2
11g

2
21γ1 + (g2

11g
2
22 + 4g11g21g12g22 + g2

12g
2
21)p1p2

+ g2
12g

2
22γ2 (20)

Cum31(s1, s2) = g3
11g21β1 + g3

12g22β2, (21)

Cum13(s1, s2) = g11g
3
21β1 + g12g

3
22β2, (22)

Cum22(s1, s2) = g2
11g

2
21β1 + g2

12g
2
22β2. (23)

3 Solutions of equations

In this section, we will study solutions of equation of the form Criteria =
0, where the Criteria is a function of 4-order cumulants. In previous works
[12], we used adaptation equations based on cancellation of Cum31(s1, s2) and
Cum13(s1, s2). However, it has been experimentally shown [14] that the rule
can give spurious solutions for specific sources, and that the spurious solutions
can be removed by cancelling Cum22(s1, s2). For this reason, we will study here
two criteria. The first one is Cum2

31(s1, s2)+Cum2
31(s1, s2) = 0 and the second

one Cum2
22(s1, s2) = 0.

3.1 Cost functions

3.1.1 First cost function

We consider the cost function:

Cum2
31(s1, s2) + Cum2

31(s1, s2). (24)

If the outputs are statistically independent, each cumulant is equal to zero.
Therefore, the minimum of the cost function, which is a sum of squares, corre-
sponds exactly to zero. By using equations (21) and (22), we can write the cost
function:

(g3
11g21β1 + g3

12g22β2)
2 + (g11g

3
21β1 + g12g

3
22β2)

2. (25)
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Equating it to zero, and denoting λ = 4

√

∣

∣

∣

β1

β2

∣

∣

∣
, we get six solutions:

g11 = g22 = 0 (26)

g21 = g12 = 0 (27)

g11 = g12 = 0 (28)

g21 = g22 = 0 (29)

g12 = λ g11

g22 = −λ g21 (30)

g12 = −λ g11

g22 = λ g21 (31)

Equations ( 26 ) and ( 27 ) are the theoretical solutions for the problem sepa-
ration of sources. They lead to a diagonal matrix G, up to a permutation: they
will give us the sources signals up a permutation and an amplitude coefficient.
Equations ( 28 ) and ( 29 ) correspond to trivial solutions: one of the output
signal equal to zero.
The two last solutions (30) and ( 31) are spurious solutions, depending on sta-
tistical properties of signals. We show, we can eliminate these solutions with a
simple decorrelation of the output signals, in the section 3.2

3.1.2 Second cost function

Now we consider the cost function:

Cum2
22(s1, s2) (32)

If we equate the equation ( 23 ) to zero, using the definition of λ introduced
in section 3.1.1. we may deduce two groups of solutions:

• If the sources have the same sign of kurtosis, we only have four solutions:

g11 = g22 = 0 (33)

g21 = g12 = 0 (34)

g11 = g12 = 0 (35)

g21 = g22 = 0 (36)
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• If the sources have not the same sign of kurtosis, the solutions are:

λ4(g11g21)
2 = (g12g22)

2 (37)

Solutions (33) to (36) are identical to solutions ((26) . . . (29)) which have been
converted in the last section.
It is clear that equation (37) is verified for the four solutions (33) to (36).
However there exist others solutions depending on λ.

3.1.3 Conclusion

If the signals sources have kurtosis of different sign, then the two costs will
give us the same solutions. When the sources have kurtosis of the same sign ,
the second cost (32) is better because it does not generate spurious solutions
depending of sources statistics.

3.2 Decorrelation of the output signals

If we impose to the output signals to be uncorrelated then we will find from
(15), the following relation between the coefficient of global matrix G and the
power of the sources signals:

g11g21p1 = −g12g22p2. (38)

Denoting µ = p1

p2
and assuming the coefficients (wii) of the weight matrix

are equal to one 1 then we find the following relation:

(m2
11µ+m2

12)w21 + (m2
22 + µm2

21)w12 + (m21m11µ+m22m12)w12w21

+m21m11µ+m12m22 = 0. (39)

Obviously, in the plane (w12, w21), the relation (39) is the equation of an
hyperbole, which has the following asymptotes:

w12 = −
µm2

11 +m2
12

µm11m21 +m22m12
(40)

w21 = −
µm2

21 +m2
22

µm11m21 +m22m12
. (41)

We can compute the spurious solutions of the first cost function ( (30) and (31)).
We obtain two points in the plane (w12, w21):







w21 = −m22+m21λ
m11λ+m12

w12 = m12−m11λ
m21,λ−m22

,
(42)

1This condition is not restrictive, because the separation is possible up to a diagonal matrix:
in fact, we only can estimate ratio of the coefficients of W ( wij/wii).
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





w21 = m22−m21λ
m11λ−m12

w12 = −m12+m11λ
m22+m21λ

.

(43)

Replacing these values in (39), it is easy to see that the equation (39) does not
hold except if the ratio of Cum4(xi) by the square of the power of xi is constant
(i.e. β2p

2
1 = β1p

2
2 ). This condition between power and kurtosis of the signals is

especially verified for Gaussian signals. But if only one signal is Gaussian, or for
any signals, it is no more true. Moreover, the previous condition clearly gives
us that the signal kurtosis have the same sign, and in that case we know that
the second cost function has not any spurious solutions. Consequently, for the
second cost function a simple whitening of outputs will be very efficient: if the
source kurtosis have not the same sign, the spurious solutions (37) are cancelled
by the decorrelation; if the source kurtosis have the same sign, we proved in
section 3.1.2 that there is only good solutions.

4 Study of second cost function

In the previous section, we found the second cost is better then the first one,
because of many reasons :

• It is simpler.

• It is perfect, theoretically 2, if the signals have the same sign of kurtosis.

We know the separation of sources is possible up to a diagonal matrix and
a permutation then in the following we suppose wii = 1.
Now, we will prove the cancellation or the minimisation of the second cost leads
to the same result, and we will prove that this cost have not a local minima if
signals have the same sign of kurtosis.

4.1 Minimising or cancelling the cost

If the sources have the same sign of kurtosis, from the relation(23) it is clear
that Cum22 have the same sign than the kurtosis of the source signals. Then
the study of a cost function based on Cum2

22(s1, s2) or Cum22(s1, s2) give us
the same result, because the sign of Cum22(s1, s2) does not change. If we look
for the global extremum of the Cum22(s1, s2), we should solve:

∂Cum22(w12, w21)

∂w12
= 0. (44)

Solving the equation gives an unique solution, see appendix 7.1:

2In fact, the result depends on the algorithms
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w12min = −
β1g

2
21m12m11 + β2g

2
22m21m22

β1g2
21m

2
12 + β2g2

22m
2
22

(45)

For finding the global extremum of the cost, we must solve the equation:

∂Cum22(w12min, w21)

∂w21
= 0 (46)

Then we will find the following results:

g22 = 0 (47)

g21 = 0 (48)

g21 = −g22
3

√

β2m11m2
22

β1m12m2
21

(49)

The solutions (47), (48 ) with the relation (45) give us two global minima,
corresponding to the theoretical solutions of the problem: the first one is w21 =
−m22/m12 , w12 = −m11/m21 , and the second one is w21 = −m21/m11 ,
w12 = −m12/m22. The last solution ( 49) corresponds to a maximum. Then we
remark that the cancellation as well as the minimisation of that cost have the
same result.

4.2 Local minima of the cost

We still suppose that the signal kurtosis are both positives 3, and we search if
the second cost function has local extremum. To find them, we must solve:

∂Cum22(w12, w21)

∂w12
= 0

∂Cum22(w12, w21)

∂w21
= 0 (50)

Then we will find the following solutions, see appendix 7.2:

g11 = g12 = 0

g21 = g22 = 0 (51)

g11 = g22 = 0

g12 = g21 = 0 (52)

3if the kurtosis are negatives then the minima of the cost (cum22(s1, s2) ) will be maximum
and vice versa, but if the cost is cum2

22(s1, s2) we will find the same result
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g21 = −g22
3

√

β2m11m2
22

β1m12m2
21

(53)

The solutions ( 51) and (52 ) give us identically the same result of the cost
cancellation (see (33), . . . , ( 36) ). Then we have the same conclusion.
The equation (53 ) is the global maximum (49 ). Then we remark that this cost
function has not local extremum.
Then we resume the result of study in this section by:

• we can not separate the sources if they have a Gaussian distribution.

• we can not separate the source if the mixture matrix M is not regular.

• the cost has 3 extrema: two minima corresponding to the cost equal to
zero, and a maximum.

5 Experimental results

In this section, we explain an algorithm of separation of sources based on our
theoretical study. Our algorithm is an adaptive algorithm, which minimises the
cost function Cum2

22(s1, s2).

We know that the Cum2
22(s1, s2) is a good cost function if the sources signals

have the same sign of kurtosis. Then we will suppose that the sources signals
are independent and they have the same sign of kurtosis. We can divide our
algorithm in 4 stages:

1. Computation the output signals for the current value of weight matrix.

2. Estimation of the different moments, and the Cum22(s1, s2) on a block of
samples.

3. Calculation of the partial derivatives of the cost with respect to the coef-
ficients of the weight matrix (see appendix 7.3), and modification of the

coefficients of the weight matrix (wij) by the vector ~dw:

~dw = −cost.
~grad(cost)

‖ ~grad(cost)‖
(54)

4. Up to a stop test, repeat at stage 1.

As stop condition of the algorithm, we proposed: ”THE GREATEST i OUT-
PUT CROSSTALK 4 IS LESS THAN A THRESHOLD”, OR ”THE NUMBER

4The crosstalk on channel i is defined as (assuming source xi is exacted on channel i at the

convergence): crosstalki = 10 log(
E[(si−xi)

2]

E[x2

i
]

)
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OF ITERATION IS GREATER THAN THE MAXIMUM ITERATION
NUMBER 5”.

We tested the algorithm on independent identically distributed (i.i.d)
signals (see fig 1.a, 1.b and 1.c) and with large number of samples. In this
case, we achieve a -37 DB of crosstalk. If we choose a large absolute value
for the wanted crosstalk then the algorithm will pass by a maximum absolute
value of the crosstalk and it will turn again. Now we calculate the normalized
output signals, corresponding to maximum absolute value of crosstalk, and to
emphasize on the separation performance, we draw the error (si − xi) (fig 1.d),
rather than xi for which the comparison with siwould not be very easy. Finally
the two Figures 2.a and 2.b show the time evolution of the cost function and of
the absolute value of crosstalk.

In other cases, where we have not a sufficient number of samples (for
example when we have non stationary signals), we always can use the algorithm
but its performances are not guaranteed: it will converge, but the residual
crosstalk depends on many parameters (initial points, signal statistics, . . . ).
However, the residual crosstalk of about -20 DB can be achieved with statistic
estimated on 25 samples. Figure 3 shows experimental relation between the
number of samples used to estimate the cross cumulant and the separation
performance (showed by the maximum 6 of the crosstalk absolute value). We
mark that every point in Fig 3 is the average of five experimental measure. In
generally, We can observe that we have about -25 DB of the residual crosstalk,
and we will work to explain the strange behavior of the graph start 7

Another strategy, based on the search of the extrema proposed in section
4.1, can be used:

1. we fix all the parameters of the weight matrix except one, and we minimize
the cost function with respect to that parameter.

2. After that, we replace that parameter by its value (value corresponding
an the minimum of the cost), and we minimize the cost with respect to
the other parameter.

3. We repeat at step 1 until a stop condition.

5Our algorithm is a cancelling adaptative algorithm, and because of the estimation error
in the statistic values of the outputs signals, then we can not atteint the zero value of cost
and our algorithm will not exactly converge

6The maximum of the crosstalk calculate for each N value with 20 iterations, where N is
the sample number used to estimate the cross-cumulant.

7Because the separation performance varies in opposite direction of the sample number.
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6 Conclusions

In these few papers, we study some cost functions for Blind Sources Separation,
based on the fourth cross-cumulant. If we look at the P.H.D of Nguyen Thi.l
[12] and the work of Xavier.O [14], Then we will remark that a cost function
based on the cross-cumulant Cum2

13 + Cum2
31 is not sufficient for all signals,

and if we add up the cross-cumulant Cum2
22 to the old cost function we will

get better the cost function. But Lacoume, J.-L. and Ruiz, P. in [11], proved
that a cost function based on the square sum of the fourth cross-cumulant, is
sufficient for separate our sources.
In these papers, we study the possibility to simplify the cost function. For that
goal, we start our study by the comparison between two cost functions. Then
we prove that a cost function based on the fourth cross-cumulant Cum2

22 is a
good and simpler criteria for separate the sources signals 8.

After the theoretically demonstration, we proposed an experimental algo-
rithm based on this criteria for separate the source signals. We Tested our
algorithm on i.i.d signals, and we found a good results. The performance of
this algorithm is about -30 DB of crosstalk diaphonie. In the case of non
stationary signals, we can not use a lot number of samples, then we need an
algorithm able with a little number of samples to separate the source signals.
Experimentally, we proved that even when we have a little number of samples,
we can achieved a -20 DB of crosstalk diaphonie.

Finally, we proved that when the sources signals have the same sign of kurto-
sis, Then with a simple Whitening we able to separate our signals unless where
the signals are Gaussian signals. Then in generally, the criteria based on the
fourth cross-cumulant Cum2

22 is a good cost function.

7 Appendix

7.1 Appendix 1

From the relations (7), (8), (9) and (23) we prove that:

∂Cum22(w12, w21)

∂w12
≥ 0.

From that relation we find:

g11β1g
2
21m21 + g2

22β2g12m22 ≥ 0.

Finally, from that last relation, we prove that:

(β1g
2
21m

2
21 + g2

22β2m
2
22)w12 ≥ −(β1g

2
21m21m11 + g2

22β2m22m12).

8If the sources signals have the same sign of kurtosis
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If β1 and β2 are ≥ 0, then we will find:

w12min ≥ −
β1g

2
21m21m11 + β2g

2
22m12m22

β1g2
21m

2
12 + β2g2

22m
2
22

. (55)

From the value of w12min in (55 ) we can calculate the values of global
coefficients:

g11 =
g2
22β2m22(m11m22 −m21m12)

β1g2
21m

2
21 + β2g2

22m
2
22

(56)

g12 =
g2
21β1m21(m12m21 −m22m11)

β1g2
21m

2
21 + β2g2

22m
2
22

. (57)

From the relation (23) we can calculate the value of the cost :

Cum22(w12min, w21) =
β1β2(m11m22 −m12m21)

2g2
22g

2
21

β1g2
21m

2
21 + β2g2

22m
2
22

. (58)

Looking for the global minimum of cost, finally we equate:

∂Cum22(w12min, w21)

∂w21
=

β1β2g21g22(m11m22 −m12m21)
2(β1g

3
21m12m

2
21 + β2g

3
22m11m

3
22)

(β1g2
21m

2
21 + β2g2

22m
2
22)

2
= 0.(59)

Then we find the solutions (47), (48) and (49).

7.2 Appendix 2

Using (23) we can prove that the system:

{

∂Cum22(w12,w21)
∂w12

= 0
∂Cum22(w12,w21)

∂w21

= 0
(60)

is equivalent to:
{

g11β1g
2
21m21 + g2

22β2m22g12 = 0
g21β1g

2
11m11 + g22β2m12g

2
12 = 0,

(61)

If we suppose that g11 = 0 (for example), then we will find:

g11 = 0 ⇒















g22 = 0
g12 = 0

m12 = m22 = 0.

(62)

The last solution in (62) give us a constraint in the coefficient of mixture matrix.
We can eliminate that relation, because it is evident from the model (7) that
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the constraint is equivalent to the case where we only have one source.
If we assume that the other coefficients of global matrix are equal to zero, we
will have a similar result.
If we suppose now that (gij) and (mij) are different from zero, then we find
the equation of the global maximum (49).

7.3 Appendix 3: computation of the cost derivatives.

Suppose that the two diagonal coefficients of separation matrix are equal to one
(wii = 1), and from the relation (8), we can find these relations:

si = ei + wijej (63)

ei =
si − wijsj

1 − wijwji

. (64)

From these last equations, we can calculate the partial derivatives of the output
signals with respect to the coefficients of the weight matrix:

∂si

∂wij

= ej =
sj − wjisi

1 − wijwji

∂si

∂wji

= 0. (65)

Finally, if we use the relations (4) and (65), we will calculate the partial deriva-
tive of the Cum22(s1, s2) with respect to the coefficients of the weight matrix:

∂Cum22(si, sj)

∂wij

=
2

1 − wijwji

[Mom13(si, sj)

−wjiMom22(si, sj) − 3Mom02(si, sj)Mom11(si, sj)

+wjiMom20(si, sj)Mom02(si, sj) + 2wjiMom2
11(si, sj)].(66)
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