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Abstract

We propose an algorithm for blind separation of sources in convolutive
mixtures based on a subspace approach. The advantage of this algorithm
is that it reduces a convolutive mixture to an instantaneous mixture by
using only second-order statistics (but more sensors than sources). Fur-
thermore, the sources can be separated by using any algorithm for an
instantaneous mixture (based generally on fourth-order statistics). Oth-
erwise, the classical assumptions for blind separation of sources (at most
one source can be a Gaussian signal and the sources are statistically in-
dependent) and some new subspace assumptions are considered. The
assumptions concern the subspace model and their properties are em-
phasized. Finally, an experimental study is conducted and results are
discussed.

1 Introduction

The blind separation of sources problem, which was introduced in 1984 by
Hérault and Ans [10] for modeling motion decoding in neurobiology, has been
extensively studied during the last ten years, especially by researchers in the sig-
nal processing field, and more recently by those in the neural network field [3, 2].

Since 1985, many authors [7, 6, 17] have addressed the problem of source
separation in memoryless linear mixtures (also called instantaneous mixtures).

1



In the last five years, only a few methods have been proposed for separating
sources from linear convolutive mixture [23, 19].
In both cases, separation methods are based on the statistical independence of
the sources, which is the main assumption in the source separation problem.
This assumption is usually exploited using, in most source separation algo-
rithms, higher order statistics (typically fourth-order statistics).

However, separation algorithms based on second-order statistics are very
efficient if specific assumptions on sources or on mixtures are satisfied. For
instance, in memoryless mixtures, if the sources are not independent and
identically distributed (iid) and have different spectra, second-order separation
is possible [20, 4]. Van Gerven et al. proposed a second-order separation
algorithm for instantaneous mixtures [21], or for convolutive mixtures [22] if
the mixture involves strictly causal finite impulse response (FIR) filters.

In the general case, the blind separation of sources is based on two basic
assumptions:

1. The source signals are statistically independent [15, 12, 16].

2. At most one source is a Gaussian signal [17, 14].

In the following, we assume that these two assumptions are true.

2 Mathematical model

The blind source separation problem is characterized by estimating the source
signals from q sensors receiving linear mixtures of the sources. Let us denote by
X(n) = (x1(n), x2(n), . . . , xq(n))T a set of q observed mixtures of p unobservable
independent sources S(n) = (s1(n), s2(n), . . . , sp(n))T . The channel effect is
considered as a convolutive mixture:

X(n) =

M
∑

i=0

A(i)S(n − i) ⇐⇒ X(z) = A(z)S(z), (1)

where A(i) is a q × p scalar matrix such that the channel effect

A(z) = (aij(z)) =
∑M

i=0 A(i)z−i, and M is the degree1 of A(z). In addition,
let XN(n) and SM+N (n) be random vectors defined by:

XN (n) =





X(n)
. . .

X(n − N)



 and SM+N (n) =





S(n)
. . .

S(n − M − N)



 . (2)

Using (1) and (2), we can easily prove that:

XN (n) = TN (A)SM+N (n). (3)

1The degree of a polynomial matrix A(z) corresponds to the highest value of the degree
among the degrees of all the elements aij(z).
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In (3), TN(A) is the q(N + 1)× (M + N + 1)p Sylvester matrix associated with
A(z):

TN(A) =











A(0) A(1) A(2) . . . A(M) 0 0 . . . 0
0 A(0) A(1) . . . A(M − 1) A(M) 0 . . . 0
...

...
0 . . . . . . 0 A(0) A(1) . . . A(M)











.

(4)
The Sylvester matrices are well known in system theory [13] for their attractive
properties, as long as the following three assumptions are satisfied2:

• H1: The number of sensors is larger than the number of sources, p < q.

• H2: A(z) is irreducible (Rank(A(z)) = p, ∀z excluding z = 0 but including
z = ∞).

• H3: A(z) is column reduced:
A(z) can be written as:

A(z) = Accdiag{z−M1 , . . . , z−Mp} + A1(z), (5)

where Mj denotes the degree3 of the j-th column of A(z), Acc is a non
polynomial matrix, and A1(z) is a polynomial matrix, whose degree of the
j-th column is less than Mj. By definition, A(z) is reduced by column if
and only if Acc is a full-rank matrix.

As long as p < q, these assumptions have been shown in [9] to be realistic (it is
easy to verify that if A(z) is a square matrix, then the rank of A(z) will be less
than p, at least for some zi such that det(A(zi)) = 0). It can be shown [5] that
under the assumptions H2 and H3:

Rank(TN(A)) = p(N + 1) +

p
∑

i=1

Mi, (6)

as long as N ≥
∑p

i=1 Mi, where Mi is the degree of the i-th column Ai(z) of
A(z).
One should note that p(N + 1) +

∑p
i=1 Mi is precisely the number of nonzero

columns of TN (A). In particular, if all the degrees (Mi)i=1,p coincide with M ,
then, TN(A) is full column rank if N ≥ pM . Therefore, TN (A) admits a left
inverse.

2In this case, the filter A(z) can be completely determined using the Sylvester matrix
[13, 9, 18].

3The degree of the j-th column of A(z) equals the maximum degree of the j-th column
component aij (z), ∀i = 1, q.
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3 Criterion and constraint

Let us assume that the degrees Mi are equal4 to M :

Mi = M i = 1 . . . p. (7)

Generalizing the method proposed by Gesbert et al. [8] for identification (in the
identification problem, the authors assume that they have one source, p = 1, and
that the source is an iid signal), we propose the estimation of a left inverse matrix
of the Sylvester matrix TN(H) by adaptatively minimizing a cost function.
Let us choose N ≥ pM . Then, as mentioned in the previous section, TN(A)
is left invertible, so that there exists a p(M + N + 1) × q(N + 1) matrix B for
which:

BTN (A) = I(M+N+1)p, (8)

which implies:
BXN (n) = SM+N (n). (9)

Using definitions (2), it is obvious that the first (M + N)p rows of BXN (n)
are equal to the last (M + N)p rows of BXN (n + 1). More precisely, if B is a
p(M + N + 1) × q(N + 1) matrix for which

(I(M+N)p 0p)BXN (n) = (0p I(M+N)p)BXN (n + 1) (10)

then for each n it can be proved that (see Appendix A):

BTN(A) = H =











H 0 0 . . .

0 H 0 . . .
... 0

. . .
...

0 0 . . . H











= diag(H, H, . . . , H), (11)

for some p × p scalar matrix H . Therefore, it is possible to identify a left
inverse of TN (A) by minimizing the quadratic cost function, derived from (10)
by averaging:

J (B) = E‖(I(M+N)p 0p)BXN (n) − (0p I(M+N)p)BXN (n + 1)‖2. (12)

The minimization of (12) should be done under a constraint ensuring that the
matrix H in (11) (corresponding to the minimum of (12)) is invertible5. We
note that the first p–components of BXN (n) are equal to HS(n) and it can
be corresponded as a memoryless linear mixture (with a mixing matrix H) of
the sources S(n). Finally the sources S(n) can be retrieved by using a source

4If this assumption is not satisfied, then, by adopting another parameterization also based
on the Sylvester matrix, it is possible to separate the sources [18].

5If the matrix H, corresponding to the minimum of (12), is not a regular matrix, then the
second step of our algorithm, the separation of the instantaneous residual mixture, cannot be
achieved.
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separation algorithm for instantaneous mixtures6.
As a constraint for the minimization of J (B), we propose:

B0RXBT
0 = Ip, (13)

where B0 is the first block row (p× q(N +1)) of B, and RX = EXN (n)XN (n)T

is the covariance matrix of XN (n). This constraint is sufficient to ensure the
invertibility of H . In fact:

Ip = B0RXBT
0 = EB0XN(n)XT

N (n)BT
0

= EB0TN(A)S(M+N)S
T
(M+N)TN (A)T BT

0

= B0TN (A)ESM+NST
(M+N)(B0TN (A))T

= HES(n)S(n)T HT

= HRSHT , (14)

where RS = ES(n)S(n)T . Clearly, Rs is a diagonal full-rank matrix because
the sources are independent signals, and the constraint (13) ensures the
invertibility of H .

In practice, an adaptive minimization algorithm can be derived by a classical
LMS algorithm, involving only second-order statistics. After some calculations,
we can find that the weight matrix B should be adapted for minimizing the cost
function (12), by:

∆B =
∂J (B)

∂B
=















Ip 0 . . . 0 0
0 2Ip 0 · · · 0
...

. . .
. . . · · · 0

0 · · · · · · 2Ip 0
0 · · · · · · 0 Ip















BRX

−

(

0 I(M+N)p

0 0

)

BRT
X1 −

(

0 0
I(M+N)p 0

)

BRX1

where Ip is a p× p identity matrix and RX1 = EXN (n)XN (n + 1)T . After each
step, the current estimate B(n) of B must be constrained to satisfy (13): this
is done by normalizing B0 as shown in the following equation:

B0 = (B0R̂X(n)BT
0 )−1/2B0 (15)

where R̂X(n) is an estimate of RX and (B0R̂X(n)BT
0 )−1/2 is the square root of

B0R̂X(n)BT
0 , which can be calculated using Cholesky decomposition.

Finally, the residual instantaneous mixture (corresponding to H) is processed
using any source separation algorithm for instantaneous mixtures (for example,
we used a J-H algorithm [11]).

6We can say that the majority of the filter coefficients A(z) (the total number of coefficients
is q×p×(M+1)) can be estimated using second-order statistics, but the p×p coefficients of the
matrix H must be estimated by using an instantaneous mixture algorithm and fourth-order
statistics.
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4 Experimental results

The experiments discussed here are conducted using two sources (p = 2), three
or four sensors (q = 3 or 4) and the degree of A(z) is chosen between 1 and 5
(1 ≤ M ≤ 5). Convergence is obtained after about 7000 iterations with a LMS
algorithm (see section 3), providing good separation: with stationary signals,
the crosstalk is about −21dB.

The matrix BminTN(A) (where Bmin is the estimated matrix minimizing
(12) using only second-order statistics) is illustrated in Fig. 2. This matrix is
block diagonal with diagonal blocks of size 2×2 (because there are two sources)
corresponding to H in equation (11)).

The second step of the separation algorithm involves separating the instan-
taneous mixture H using higher order statistics (basically fourth order).

First, we will illustrate the performance of our algorithm when the sources
are uniform iid signals and the mixtures consist of low-pass filters in Fig. 3.
The algorithm developed in this study assumes indirectly that M is perfectly
known (see assumption (7)). We show in section 4.1 the importance of this
assumption from a practical point of view.

4.1 Filter degree

Theoretically, the algorithm is derived under the condition that the columns
of A(z) have the same degree (Mi = M). This also means that the degree M

must be perfectly known7. The influence of a wrong estimation of M on the
algorithm robustness is of considerable interest. We studied two possible cases:
under estimation and over estimation of M .

4.1.1 Under estimation of M

We first test the influence of an under estimation of M . A preliminary experi-
mental study showed that the separation is possible even if the estimated degree
M̂ of A(z) is less than the actual degree M . Then, we addressed the question:
what are the conditions to achieve a good separation with an underestimated
value of M?
We experimentally tested the following conjecture: ” The separation is possible
if the estimated degree M̂ is sufficient to provide good fundamental modeling
of filters Aij(z)”. Experimental study confirms this conjecture, and some of the
experiments are as follows:

• We verify that if filters have a degree equal to M = 2n + 1 with n res-
onances (n = 1, 2, 3, . . .), the underestimation (M̂ = 2n) leads to good
separation. For example, Fig. 4 illustrates the total matrix B.TN (A)
when M̂ = 2 while the actual degree is M = 3 (most of the filters Aij(z)

7An estimator of M is proposed by Abed Meraim et al. [1].
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have one resonance): the matrix B.TN (A) is block diagonal, with constant
blocks corresponding to the remaining instantaneous mixture H .

• In contrast, an underestimation such that the order M̂ is not sufficient
to model all the resonances of the mixing filters, does not provide good
separation. For instance, in the case of filters with two resonances (M =
5), M̂ = 2 or M̂ = 3 cannot lead to good results. For example, Fig.
5 illustrates the case when M̂ = 2 and the degree M = 5: the matrix
BTN (A) is no longer block diagonal.

4.1.2 Over estimation

Theoretically, an over estimation of the filter order implies that the span8 of
TN(A) allows us to identify the filter A(z) up to a scalar filter [1], i.e, we can
only estimate A′(z) = α(z)A(z). This property can be observed experimentally.
For example, consider A(z) with degree M = 3 and assume that M̂ = 4. Results
obtained with this wrong estimation are shown in Fig. 6, where clearly BTN(A)
is not a block diagonal matrix as shown in Fig. 6, the diagonal blocks are no
longer constant.
The estimated sources (not shown here) are strongly distorted by filters α(z)
and the separation can never be achieved. This experiment proves that the
algorithm is not robust to an overestimation of the filter degree M .

5 CONCLUSION

In this paper, we have proposed an adaptative algorithm for source separation
in convolutive mixtures based on a subspace approach. This algorithm applies
if the number of sensors is larger than the number of sources, and it allows the
separation of convolutive mixtures of independent sources using mainly second-
order statistics. A simple instantaneous mixture, the separation of which gen-
erally needs high-order statistics, appears only if filters have the same order.
Most of the parameters can be estimated using a simple LMS algorithm.
Theoretically, the algorithm requires knowledge of the filter degree M . However,
we showed experimentally that an underestimation of M (M̂ < M) is acceptable
as long as it allows a correct modeling of the filter behavior. The algorithm,
based on LMS method, converge slowly and we currently study algorithm based
on Gradient Conjugate in order to improve convergence speed and to be able
to process stationary signals as well as non-stationary ones.

A Type of solutions

Let us denote by H = BTN (A). Using (10), we remark for each n that H
satisfies:

[I(M+N)p 0p]HS(M+N)(n) = [0p I(M+N)p]HS(M+N)(n + 1) (16)

8The space spanned by the column of TN (H).
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⇐⇒ [0p (I(M+N)p 0p)H]S(M+N+1)(n + 1) = [(0p I(M+N)p)H 0p]S(M+N+1)(n + 1),

where 0p is a (M + N)p× p zero matrix. Let us assume that the input signal is
persistently exciting then we can write:

[0p (I(M+N)p 0p)H] = [(0p I(M+N))H 0p].

Let us assume that:

H = (Hij) =

[

a

b

]

=

[

c

d

]

.

where Hij is a p× p matrix, a and d are p× (M + N + 1)p matrix, and b and c

are (M +N)p× (M +N +1)p matrix. From the equation (17), we can deduced
that:

[b 0p] = [0p c]. (17)

Last equation implies:

• First block column (i.e the first p columns) of b is equal to zero:

Hi1 = 0, ∀ 1 < i ≤ M + N + 1, (18)

• Last column of c is equal to zero:

Hi(M+N+1) = 0, ∀ 1 ≤ i < m + N + 1, (19)

• And we have the follow relationship Hij = H(i−1)(j−1)

Finally, we can write that:

H =











H 0 0 . . .

0 H 0 . . .
... 0

. . .
...

0 0 . . . H











= diag(H, H, . . . , H). (20)

Finally, H is block diagonal matrix, as in (11).
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[11] C. Jutten and J. Hérault. Blind separation of sources, Part I: An adap-
tive algorithm based on a neuromimetic architecture. Signal Processing,
24(1):1–10, 1991.

[12] C. Jutten, L. Nguyen Thi, E. Dijkstra, E. Vittoz, and Caelen J. Blind
separation of sources: An algorithm for separation of convolutive mixtures.
In International Signal Processing Workshop on Higher Order Statistics,
pages 273–276, Chamrousse, France, July 1991.

[13] T. Kailath. Linear systems. Prentice Hall, 1980.

[14] J. L. Lacoume and M. Gaeta. The general source separation problem.
In Fifth ASSP Workshop on estimation and modeling, pages 154–158,
Rochester New-York, October 1990.

9



[15] B. Laheld and J. F. Cardoso. Adaptive source separation with uniform per-
formance. In M.J.J. Holt, C.F.N. Cowan, P.M. Grant, and W.A. Sandham,
editors, Signal Processing VII, Theories and Applications (EUSIPCO’94),
pages 1–4, Edinburgh, Scotland, September 1994. Elsevier.

[16] A. Mansour and C. Jutten. Fourth order criteria for blind separation of
sources. IEEE Trans. on Signal Processing, 43(8):2022–2025, August 1995.

[17] A. Mansour and C. Jutten. A direct solution for blind separation of sources.
IEEE Trans. on Signal Processing, 44(3):746–748, March 1996.

[18] A. Mansour, C. Jutten, and Ph. Loubaton. Subspace method for blind
separation of sources and for a convolutive mixture model. In Signal Pro-
cessing VIII, Theories and Applications (EUSIPCO’96), pages 2081–2084,
Triest, Italy, September 1996. Elsevier.

[19] L. Nguyen Thi and C. Jutten. Blind sources separation for convolutive
mixtures. Signal Processing, 45(2):209–229, 1995.

[20] R. L. L. Tong and Y. H. V. C. Soon. Indeterminacy and identifiability of
blind identification. IEEE Trans. on CAS, 38:499–509, May 1991.

[21] S. Van Gerven and D. Van Compernolle. Signal separation by symmet-
ric adaptive decorrelation: Stability, convergence, and uniqueness. IEEE
Trans. on Signal Processing, 43(7):1602–1612, July 1995.

[22] S. Van Gerven, D. Van Compernolle, L. Nguyen Thi, and C. Jutten. Blind
separation of sources: A comparative study of a 2nd and a 4th order so-
lution. In M.J.J. Holt, C.F.N. Cowan, P.M. Grant, and W.A. Sandham,
editors, Signal Processing VII, Theories and Applications (EUSIPCO’94),
pages 1153–1156, Edinburgh, Scotland, September 1994. Elsevier.

[23] D. Yellin and E. Weinstein. Criteria for multichannel signal separation.
IEEE Trans. on Signal Processing, 42(8):2158–2167, August 1994.

10



A(.) B(.)
S(n) X(n) Y(n)

Separation algorithmChannel

Figure 1: General structure.
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Figure 2: Representation of the matrix BTN(A) at the convergence. M = 3, q =
4, p = 2, the convergence is obtained after 7000 samples, the sources are two
uniform iid signals
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(a) Difference between the source s1 and the mixture signal x1.
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(b) Estimation Error: difference between the source s1 and the estimated signal y1.

Figure 3: Algorithm performance: after the convergence of the subspace iden-
tification and the separation of the residual instantaneous mixture.
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Figure 4: Total matrix BTN (A) in the case of an acceptable under-estimation
of (M̂ = 2, M = 3). The matrix remains block diagonal.
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Figure 5: Total matrix BTN(A) in the case of a too strong under-estimation of
M (M̂ = 2, M = 5). The matrix is no longer block diagonal: the remaining
mixture is not an instantaneous mixture, and separation can not be achieved.
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Figure 6: Total matrix BTN (A) with an estimation of the filter degree (M̂ =
4, M = 3).The matrix is no longer block diagonal: the remaining mixture is not
an instantaneous mixture, and separation can not be achieved.
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