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Abstract – The detection of signal presence is a crucial job carried out through spectrum sensing in 

cognitive radio systems. A tradeoff between detection accuracy and detector complexity is tackled 

often in researches. Amongst different spectrum sensing techniques, conventional energy detection is 

widely used due to its simplicity of implementation, however, it is sensitivity to noise variation makes 

it unreliable in low signal-to-noise-ratio environments. This manuscript proposes the use of 

scattering-based detector for spectrum sensing in the context of cognitive radio to provide reliable 

signal detection. Through scattering transform, signal features are enhanced whereas noise 

variations effects are reduced which enhances the detection results. The proposed detector is tested 

for chirp and spread spectrum signals in additive white Gaussian noise channel. Performance 

evaluation is conducted through calculation of detection probability for several signal-to-noise ratio 

values. Through MonteCarlo simulations, the proposed detector proves reliability of detection as 

compared to energy detection which provides false detection decision when noise only considered for 

detection. 
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1.0 INTRODUCTION 

       The basic principles of cognitive radio (CR) technology define a wireless communication 

system as an intelligent system that employ understanding-by-building methodology to 

communicate with the surroundings [1]. Through this methodology, such system is able to 

learn from the environment and also to correspond to statistical variations by adapting its 

internal states in real-time. In CR, spectrum sensing (SS) is a major task in the cognition 

cycle to facilitate the access of a primary user (PU) frequency band by a secondary user (SU) 

(i.e., cognitive radio user) while maintaining quality of service (QoS). Through SS, a CR 

system detects the spectrum holes, thus this process must be performed fast while providing 

high detection accuracy. Hence, trade-offs between sensing time and accuracy of signal 

detection are often questioned in literature [2].  

        Spectrum sensing techniques can be classified into cooperative and noncooperative 

techniques. In the former, information from multiple CR users is incorporated for PU 

detection whereas for the latter, user detection is based on the received signal at the CR 

receiver. The noncooperative techniques include energy detection (ED), matched filter 

detection (MFD), and cyclostationary feature detection (CFD) [3]. Energy detectors are easy 

to implement but they are sensitive to noise and channel impairments as well as they provide 
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unreliable results in low signal-to-noise ratio scenarios. The matched filter detectors are 

optimum for additive white Gaussian noise (AWGN) channel but they require prior 

information about the PU signal which practically cannot be provided. Further, fine detection 

accuracy can be attained through CFD but on the expenses of increased complexity. Although 

conventional energy detectors are easy to implement and they do not require PU information 

and channel state information (CSI), they suffer from performance degradation especially in 

low signal-to-noise ratio (SNR) scenarios [4]. Accordingly, other energy-detection based 

techniques are proposed for performance improvements [5], [6]. 

        On the other hand, scattering transform provides a method for hierarchal signal 

representation based on deep convolutional networks (ConvNets) [7], [8]. Its multi-stage 

architecture analyses the signal of interest into its significant features through every stage. 

Our main objective is to take advantage of the sparsity provided through wavelet filtering, 

nonlinearity and pooling to detect the presence of a signal. Needless to say, due to this 

cascaded signal analysis the noise effect is reduced and the detection accuracy is improved. 

In order to mitigate the problem of unknown signal detection in AWGN, this work introduces 

a novel spectrum sensing technique based on scattering transform (ST) as opposed to 

conventional energy detection (CED) to provide reliable detection in low SNR environments. 

2.0   SCATTERING TRANSFORM: A STATE-OF-ART 

        In scattering transform, a signal of interest is analysed through cascaded operations of 

complex modulus wavelet decomposition followed by averaging [8]. This iterative procedure 

brings up significant signals features and average out sources of time variation. A scattering 

network recovers high frequency information lost due to averaging through cascaded wavelet 

filters and rectification with complex modulus. Theoretically, the wavelet transform of the 

signal 𝑥(𝑡)  is a convolution with the scaling function 𝜙(𝑡), which is a low pass filter with a 

time support defined by 𝑇, as well as convolving 𝑥(𝑡) with the wavelet function  

𝜓𝜆(𝑡) which is a band pass filter. With  𝜆 being the center frequency of the filter, a dilated 

mother wavelet is given by: 

                                                        𝜓𝜆(𝑡) = 𝜆 𝜓𝜆(𝜆𝑡)                                                              (1) 

Then the wavelet transform of 𝑥(𝑡)  can be written as:  

                                            𝑊𝑥 = (𝑥 ⋆  𝜙(𝑡), 𝑥 ⋆  𝜓𝜆(𝑡) )𝑡∈ℝ,𝜆∈Λ                                               (2) 

where Λ is the set of all scattering network paths .by applying the complex modulus, the 

phase of all wavelet coefficients is removed and hence (2) becomes: 

                                   |𝑊|𝑥 = (𝑥 ⋆  𝜙(𝑡), |𝑥 ⋆  𝜓𝜆(𝑡)| )𝑡∈ℝ,𝜆∈Λ                                                   (3)  

To explain the iterative operation through the network, first, at the root of the network, we 

calculate the low-frequencies variation in the signal which is given by: 

                                                    𝑆0𝑥(𝑡) = 𝑥 ⋆  𝜙 (𝑡)                                                    (4) 
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To recover high frequency information lost by averaging, we apply the wavelet transform 

modulus operator: 

                                               𝑈1𝑥 (𝑡, 𝜆1) = |𝑥 ⋆  𝜓𝜆1
(𝑡)|                                              (5) 

To regain stabilization, the operator is averaged out such that we obtain: 

                                         𝑆1𝑥(𝑡, 𝜆1) = 𝑈1𝑥 (𝑡, 𝜆1) ⋆  𝜙 (𝑡)                                           (6) 

The latter is called first order scattering coefficients. These are computed with wavelets 

𝜓𝜆1
(𝑡) having 𝑄1 as an octave frequency resolution. The scattering operator at first order is 

convolved with second wavelets 𝜓𝜆2
(𝑡) and after averaging we get: 

                                           𝑆2𝑥(𝑡, 𝜆1, 𝜆2) = |𝑈1𝑥 (𝑡, 𝜆1) ⋆ 𝜓𝜆2
(𝑡)|  ⋆ 𝜙 (𝑡)                                        

(7)      

accordingly, the processes of energy averaging by 𝜙 (𝑡) and energy scattering by 𝜓𝜆(𝑡) are 

being repeated iteratively until the energy reaches a threshold. Thus for any order 𝑚 ≥ 1, the 

iterated wavelet modulus is given by: 

                          𝑈𝑚𝑥 (𝑡, 𝜆1, … 𝜆𝑚) = ||||𝑥 ⋆  𝜓𝜆1
(𝑡)| ⋆ 𝜓𝜆2

(𝑡)| ⋆ … | ⋆ 𝜓𝜆𝑚
(𝑡)|                           (8)  

and the scattering coefficients at order 𝑚 is given as: 

                                       𝑆𝑚𝑥(𝑡, 𝜆1, … 𝜆𝑚) = 𝑈𝑚𝑥 (. , 𝜆1, … 𝜆𝑚) ⋆ 𝜙 (𝑡)                                      (9)     

3.0 SPECTRUM SENSING WITH SCATTERING OPERATORS 
 

        Sensing the spectrum can be viewed as a binary hypothesis testing such that when the 

primary user (PU) is active, the received signal at the secondary user (SU) receiver can be 

given by [5]: 

                                             𝑦(𝑡) = 𝑠(𝑡) + 𝑢(𝑡)    , 𝑢𝑛𝑑𝑒𝑟 𝐻1:   PU present                            (10)                                

and when noise only present the received signal becomes: 

                                                     𝑦(𝑡) = 𝑢(𝑡)    , 𝑢𝑛𝑑𝑒𝑟 𝐻0 :   PU absent                               (11) 

where u(t) is the noise imposed at the receiver input, s(t) the primary user’s signal received 

by the secondary user receiver. Although energy detectors are easy to implement, they cannot 

differentiate significant signals and noise presence [4]. The first order scattering coefficients 

measures the time variation of signal amplitude within frequency bands covered by wavelet 

filter banks [8]. As for the second order coefficients, co-occurrence coefficients are calculated 

revealing interferences of a signal two successive wavelets 𝜓𝜆1
(𝑡)  and 𝜓𝜆2

(𝑡) for all scales 

and translates [8]. Genuinely, filtering with wavelets is a measure of correlation between the 
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investigated signal and the wavelet function. So even with low power signals, filtering with 

appropriate wavelets enhances these correlations which leads to significant energy 

measurements and reduces the noise effect. The architecture of the proposed spectrum 

sensing technique is shown in Figure 1. The procedures for spectrum sensing using scattering 

signal representation can be summarized as follows: 

1- The received signal is processed through scattering network for signal decomposition 

which enhances signal contribution and reduces noise effect. 

2- The resultant scattering coefficients are used for energy measurements as a test 

statistic T and compared with the detection threshold  𝛾. To reduce noise contribution, 

first order scattering coefficients are only used for detection 

 

     Figure 1:  Illustration of the received signal detection in the scattering domain. 

For testing purposes, the noise variance is assumed to be known which can be provided 

offline through experimental measurements. If the noise is additive white Gaussian noise 

(AWGN) with variance 𝜎𝑢
2, the processed noise through complex modulus wavelet 

decomposition and averaging result in Rayleigh distributed process. Since the variance of a 

Rayleigh process 𝜎𝑟
2 is defined by: 

                                                                  𝜎𝑟
2 = 𝜎𝑢

2(2 −
𝜋

2
)                                                                (12) 

 In this case the detection threshold is defined in terms of the variance of the scattered noise 

by: 

                                                         𝛾 = 𝜎𝑢
2(2 −

𝜋

2
)‖𝜓𝜆‖2                                                               (13) 
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3.0 RESULTS AND DISCUSSION 

        In this section, we evaluate the performance of the time-scattering energy detector 

(TSED) as compared to conventional energy detector in low signal-to-noise ratio (SNR) 

scenario using first order scattering coefficients. This evaluation is conducted in additive 

white Gaussian noise (AWGN) channel. The primary user signal is being detected in for two 

types of communication signals, namely, Chirp Spread Spectrum (CSS) and BPSK-Direct 

Sequence Spread Spectrum (DSSS). The main objective is to evaluate the proposed energy 

detector in terms of detection probability and predetermined false alarm probability.  The 

chirp signal is tested for 50 kHz sampling frequency and of duration of one second. The 

frequency variation starts at 1 Hz up to 2.5 kHz. The average window of the low pass filter of 

the scattering network is set to 2 msec. The sequence length is 50000 samples, and 

106 iterations is used for MonteCarlo simulation. As for the DSSS signal, the sequence length 

is 6400 samples. It is sampled at a rate of 1 kHz, with an average window of 32 msec.  Figure 

2 shows an example of the signal decomposition using scattering network for a noisy chirp 

signal. This visualization gives 3 sub-figures. The first one is the scalogram of the signal, the 

second is the averaged signal variation through first order scattering coefficients, and the 

third reveals the hidden signal variation due to noise by second order coefficients. Thus, these 

coefficients represent the noise contribution in the signal of interest and can be discarded for 

signal detection. This increases the reliability of the detector as compared to ED which 

measures the energy content of whatever present in a certain frequency band. The detection 

probability is calculated for false alarm probabilities of 0.02 and 0.6 and shown in Figure 3 

and Figure 4 for chirp and spread spectrum signals, respectively. These figures show that 

both detectors yields approximate performance. However, to test the reliability of the 

detectors, noise-only case is considered and false alarm probability is evaluated for different 

SNR.  As observed in Figure 5, we notice that conventional ED declares a detection of a 

significant user at low SNR which is a false detection decision where the scattering based 

detector gives zero detection at low SNR up to -3dB when only first order coefficients are 

considered for detection. For noisy or interfered signals, these coefficients can reflect 

differences between original. 

4.0 CONCLUSION 

This work shows the reliability of scattering-detector over conventional energy detector for 

sensing the spectrum in low SNR environment despite its complexity against energy 

detectors. As a result of its sparse representation and by a proper choice of the wavelet basis, 

scattering transform can enhance significant features, reveal noise variations. Further, it can 

reduce the noise effect since cascaded convolution and averaging with noise results in low 

projection of the noise on the wavelet basis, which gives reduces the noise contribution at the 

scattered output. 
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Figure.2:  Scattergram visualization of a chirp spread spectrum signal 

 

Figure 3. Detection probabilities vs. SNR for a chirp spread spectrum signal 
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Figure 4: Detection probabilities vs. SNR for direct sequence spread spectrum signal 

 

Figure.5:  False alarm declaration for ED and SBD when noise only considered.  
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