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Abstract

In this paper, a new algorithm for the in-

stantaneous mixture of the blind separation of

sources problem is derived. This algorithm deals

with Multi-Input Multi-Output (MIMO) chan-

nels. The cost function proposed in this paper

can be considered as an extension of that previ-

ously proposed by us (Mansour - Jutten [6]) for

only two sources and two sensors.

The cost function is based on the cross-cumulant

2 � 2 and it is minimized using the Levenberg-

Marquardt method. Generally, algorithm con-

vergence was attained unless than 50 iterations

and the experimental results were satisfactory

even with �ve stationary sources and two non-

stationary sources.

1 Introduction

Since 1989, blind separation of sources has been

one of the important signal processing problems.

Most of the blind separation algorithms deal with

two kinds of mixtures: instantaneous (memory-

less) mixture [1, 5, 3] or convolutive mixture (the

channel e�ects can be modeled by a matrix of �l-

ters) [11, 4, 7, 9].

Generally, fourth order statistics are needed to
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separate the sources [2, 8]. In the case of only two

sources, we proposed in [6] an algorithm for the

blind separation of sources. The separation was

achieved by minimizing the cross-cumulant 2x2 of

the two output signals. This minimization was

carried out using a gradient algorithm.

The new cost function, proposed here, like the

old one is based on the cross-cumulant 2x2 of the

output signals but the new algorithm deals with

Multiple Input and Multiple Output (MIMO).

This algorithm is relatively very rapid, and con-

vergence is attained in less than 50 iterations, ow-

ing to the choice of a simple cost function which

can be minimized using the Levenberg-Marquardt

method. Finally, by experimental study, we ob-

served satisfactory results even with a small num-

ber of sample data.

2 Model and Criterion

X represents (xi(n)), the N zero-mean unknown

sources, assumed to be statistically independent,

and E represents (ei(n)) observed signals. We as-

sume in this paper that the mixture is instanta-

neous (see Fig. 1).
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Figure 1: Channel model.

S represents the estimated signals:

S = WE = GX; (1)

where M is the mixture matrix, W is the sep-

arating matrix and G = (gij) is the global ma-

trix G = WM . The separation occurs when

G becomes a general permutation matrix (i.e,

G = �P , where P is a permutation matrix and �

is an invertible diagonal matrix [3]).

The sources can be separated by minimizing the

following cost function.

min
W
f

NX
m>n

Cum2

22
(sm; sn)g (2)

In fact, we proved in [?] that:

NX
m>n

Cum2

22
(sm; sn) = 0() gmjgnj = 0; (3)

where (1 � j � N) andm 6= n. Using eq. (3), it is

easy to demonstrate that the minimization of this

cost function leads us to the following important

proposition1:

Proposition 1: All the column vectors of

the global matrix G have at most one coef-

�cient not equal to zero.

1For example, in the case of two sources and two sensors,

we proved in [6] that four possible cases can be obtained:
8><
>:

g11 = 0 and g12 = 0 ) s1 = 0

g11 = 0 and g22 = 0 ) Good solution

g21 = 0 and g12 = 0 ) Solution up to permutation

g21 = 0 and g22 = 0 ) s2 = 0

Proposition 1 may be considered as not being

adequate to separate the sources (i.e, G becomes

a general permutation matrix). To force G to be

a general permutation matrix, we must put one

on the principal diagonal of W (wii = 1, where

1 � i � N):

wii = 1 =) Wi 6= 0; (4)

where 1 � i � N and Wi is the ith row of W .

Using eq. (4), we can prove that G cannot have a

zero row, then we can claim that:

Proposition 2: All the row vectors of G

have at least one coe�cient not equal to

zero.

Togethers, propositions 1 and 2 give us:

Proposition 3: The global matrix is a gen-

eral permutation matrix.

Finally, minimization of the cost function (2)

is done according to the Levenberg-Marquardt al-

gorithm [10, 12]. Using this algorithm, the con-

vergence of our algorithm is attained in a small

number of iterations, as the experimental results

in the next section demonstrate.

3 Experimental results

In the case of stationary signals, good results are

obtained (the cross-talk is about -25 dB at most

of the channels).

Satisfactory results are obtained even with �ve

stationary signals. The signal statistics are es-

timated over 1500 samples. The convergence is

obtained after 25 iterations, as shown in �g. 2.

In the cases of two non-stationary sources, sat-

isfactory results are obtained: the signal statistics

are estimated over 300 samples and the conver-

gence is obtained within less than 50 iterations.
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Figure 2: Criterion convergence.

For more than two non-stationary sources, the

experimental results depend on the properties of

the sources (the non-stationarity and the silent pe-

riod). To demonstrate this, we present the results

of an experiment attempting to separate three

sources N = 3 (see Fig. 3):

� The �rst source is children's song (with mu-

sic). This source has strong non-stationarity

and a relatively low power.

� The second source is a stationary noise.

� The third source is the English phrase "Good

morning" spoken by a man. This source

presents a high energy into the convergence

period.

All three signals were recorded in real room using

a normal (non-sophisticated) microphone. The

mixture was done numerically, using a PC and

an instantaneous mixture model (see Fig. 3).

4 Conclusion

In this paper, we have proposed a fast algo-

rithm for blind separation of sources. This algo-

rithm minimizes, using the Levenberg-Marquardt

method, a cost function based on the cross-

cumulant 2x2. The experimental study demon-

strated that the convergence is very rapid (gener-

ally, less than 50 iterations are required to reach

convergence).

In the experimental studies, we have obtained

good results, and even when using only if a small

number of samples, the algorithm is able to con-

verge using less than 500 samples. Also in the case

of stationary signals, this algorithm can separate

more than two sources.

To date, we have obtained good results in the

cases of two non-stationary signals, the cross-talk

is about -22 dB. Attempts to improve the algo-

rithm to allow separation of more than two non-

stationary signals are underway.
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Figure 3: The experimental results: First column contains the sources, the second column contains the

mixture signals and the last one contains the estimated signals.
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