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ABSTRACT the Leonov-Shiryayev formutd9], [10]:

Most of recent and important algorithms in signal process- ~ Cum,[X]| = Cum/[X, ..., X]
ing (for blind identification or separatioetc) are based on _ Z(_l)kfl(k, C)IE[XME[XY]. .. E[X"](2)
higher order statistics (HOS). And most of them use a crite-
ria based on the fourth order statistics (moment or cumjlant By using this relationship, we calculate the 4th order cumu-
The problem of using HOS consists on the estimation of the lant of X :
?tatIStICS. In the literature, three dlﬁergnt estimatofshe CumaX] = E[XY - 4E[X|E[X?] — 3E2[X7]
ourth order cumulant were used. In this paper, we show by
an experimental study that the performance of these estima- +12E°[X]E[X?) - 6E'[X). 3)

tors depend on the nature of the real stochastic signal (stator a zero-mean stochastic sigRathe second order cumu-

tionary or non-stationary). We found that when choosing the |ant is equal to its second order moment and its 4th order cu-
estimator, one must take in consideration the signal itatis  mylant becomes:

properties. . -
KEYWORDS: Higher Order Statistics, Cumulants, Blind Cumy[X] = E[X"] - 3E7[X7]. (4)
Identification, Estimators, Adaptive algorithms. 2. Classical estimator

1. Introduction Let X to be a zero mean stochastic signal wheris an event

In the last two decades, high order stochastic (HOS) meth- (Or @ signal sample) ok (1 < i < N). The classic estimator
ods and theories were one of the mostimportant field in signal ©f therth order moment o' is given by:

processing theory. 1
The HOS can be considered as an important complement of Iy = N Zx; (5)
the classic second order stochastic (SOS) methods (power, i=1

variance, covariance and spectra) to solve many recent andt js easy to verify that (5) is an unbiased estimator ofittre
important telecommunication problems[1], as blind idénti  order moment of (i.e E[fi;] = ).
cation or equalization, blind separation of sources ane tim Tq estimate the 4th order cumulant &, we can derive an

are based on the fourth order statistics.

In this paper, we focus an the estimation problem of the sec- Cumy[X] = fug — 3/752, (6)
ond and fourth order statistics, which are the mostly used Itis proved [11, 10] that the estimator (6) is a biased estima
ones. and the estimation error decreases proportiongﬂ tan fact,
By definition [7], therth order moment, of a stochastic Py using (5) and (6) we can write:
signalX is: Cuma[X] = fii— 3,
1 & 3«
4 2,2
pr = E[X7] (1) = N2 u e 2w, ()
i=1 i,j=1

1The original formula shows the relationship among the clamiubf
stochastic signalX; (¢ = 1,...,r) and theirs moments of orderp < r:

Cum[X1,...,X,] =

S oEtw - e[ xae[ ] x0- e ] x

1€V JEV2 k€vp

whereFE is the mathematical expectation. THé order cu-
mulant of X can be calculated from its moments, by using

where the addition operation is over all the setp{l < i < p < r) andv;
*Prof in Dept. of Information Eng., Nagoya Univ. Furo-cho,ikilsa-ku, compose a partition [8] of1,...,r}.
Nagoya 464-01, Japan 2In many applications, the stochastic sigiiais zero mean signal.




And the estimator expectation becomes: use an adaptive estimators, these estimators are named
low-pass estimators:

E[CZTTM[XH = N4_%(N4+(N )M2) ﬁ;{k} _ (lfoz)ﬁg{kfl}Jraxi
= Cumy[X]-— %(Cude] + 213)(8) - pa{ky = (1=ypafk -1} + vz,
Cuma[X){k} = pa{k} - 3(a{k})” (12)

Itis easy to prove that: ) .
where(1 < k < N). The greatest advantage of this estima-

- N + 9 N N tor consists on that it is very simple and it can be used even
Cumy|X] = Z CNNOD > aal, when the signal is non-stationary (see next section). The ma
=1 i,j=1 jor problems of this estimator consist on the choice of the

9) values ofa and~, and the variance of the estimation error

is an unbiased estimator for the fourth order cumulant of gepends on the signal power (see also the next section).
X. The estimation error between the two estimators (7) and 1o estimate the fourth order cumulant, Amblard and Brossier
(9) depends at first on the samples numberand on the  [12] proposed another adaptive low-pass algorithm. THeir a

statistics ofX. By experimental study, we found that when  gorithm avoids the estimation of the fourth-order moment, i
N > 100, the estimation error will become very small (see fa¢t:

figure 1).
ik} = (1-a)@{k -1} +aa]
Cuma[X[{k} = Cuma[X]{k—1}
200 400 600 800 1000 +7Hk (0%4 [X]{k/’ _ 1}) (13)
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0 01 with:

0.015 .

0.02 Hy (Cumy[X[{k —1}) =
-0.025 x% - 395%//5{]“ — 1} = Cumy[X|{k — 1}, (14)

The quantityz} — 32312 {k — 1} is a kind of instantaneous

Figure 1. The estimation error for the classical estimafor o €stimate of the cumulant, so thid, (C'um4[X]{k—1}) mea-
the fourth order cumulant. sures the distance between the previous value, [ X]{k —

1} and the instantaneous estimate. This algorithm is simple

and asymptotically unbiased, but it is relatively slow ta€o

The estimator (5) is not an adaptive one, but it is easy to verge. Amblarcet al. [13] apply their algorithm into different
force it to be an adaptive one: application: transient detection, blind deconvolutiod &m-
ing recovery in communication.

k Vir{k — 1} + a7 4. Experimental results
in = k (10) In this section, we present some experimental results to
= compare the three estimators (11), (12) and (13). And we es-
timate the second and the fourth order statistics usingethes
different algorithms. The estimation results (of the these
timators) and the theoretical values (15) are plotted bggusi
different color lines as follows:

ol B

pr{k} =

wherep,-{k} is the estimator of theth order moment at the
kth iteration. Finally, by using (9) and (10) we can say that
the classical adaptive estimator for the 4th order stesiss:

TN 2
ik} = (k— 1)“2{: — 1)+ (1<k<N) ¢ The theoretical values are plotted using a black line.
Sk = (k- Dpa{k — 1} + 2 (1 <k<n) e The red line corresponds to the classical estimator.
ko k 3k e The blue line corresponds to the low-pass estimator.
Cuma[X]{k} = k— u4{k} (NQ{k} (11) e The green line corresponds to Amblard’estimator (just
1<k< N) for the fourth order cumulant).

At first, let us consider the case when the sigkiak a white,
zero-mean and stationary signal with a uniform probability
density function (pdf). The fourth order statistics of thig-

nal are equal to:

This algorithm is very simple and its convergence

is very fast, but it may have difficulty to converge

when the signal is non-stationary (see section 4).
3. Low-pass estimators

The classical estimator is not the only estimator used in the A2

. . . 2

literature to estimate the fourth order statistics. Manats EX7] = 3
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Figure 2. White, zero-mean and stationary sigaa- 0.01,
v = 0.03.

4
E[XY = A
5
o p4
Cumy[X] = i::l (15)

Where A is the maximum amplitude oK. For stationary
signal, the classical estimator (11) converge very fast and
it seems that it gives better performances than the other
estimators (see figure 2).

As we said in the previous section, the performances
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Figure 3. White, zero-mean and stationary signat: 0.001,
~ = 0.003.

the second and the fouth order statistics over a 30000 sample
of an iid zero-mean non-stationary signal, this signal com-

poses of four parts: uniform pdf (5000 samples), Gaussian
pdf (3000), uniform pdf (10000) and the last part has a Gaus-
sian pdf (12000). We can observe in the same figure 4 that
the estimation error variance of the low-pass estimator de-
pends on the signal variance, but it converged faster than th

Amblard-Brossier estimator.

of the low-pass estimator (12) and the convergence speed

of Amblard-Brossier estimator depend on the value of two
parameters and~y. Thus, when we decrease (resp. increase)
the values ofa and v than the convergence speed will
decrease (resp. decrease) but the variance of the estimatio
error will increase (resp. decrease). For the same sigrhl an
for different values ofv and~, we can observe in figure 3 the
variation of the estimator performances.

Unfortunately, even though the classical estimator was the

good estimator for stationary signal, becomes useless for a

non-stationary signal. For example, in figure 4, we estimate
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Pow Second order nonent general than the low pass estimator because the estimation e
14 ror variance of the low-pass estimator depends on the signal
12 variance.
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