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ABSTRACT

Most of recent and important algorithms in signal process-
ing (for blind identification or separation,etc) are based on
higher order statistics (HOS). And most of them use a crite-
ria based on the fourth order statistics (moment or cumulant).
The problem of using HOS consists on the estimation of the
statistics. In the literature, three different estimatorsof the
fourth order cumulant were used. In this paper, we show by
an experimental study that the performance of these estima-
tors depend on the nature of the real stochastic signal (sta-
tionary or non-stationary). We found that when choosing the
estimator, one must take in consideration the signal statistical
properties.
KEYWORDS: Higher Order Statistics, Cumulants, Blind
Identification, Estimators, Adaptive algorithms.

1. Introduction

In the last two decades, high order stochastic (HOS) meth-
ods and theories were one of the most important field in signal
processing theory.
The HOS can be considered as an important complement of
the classic second order stochastic (SOS) methods (power,
variance, covariance and spectra) to solve many recent and
important telecommunication problems[1], as blind identifi-
cation or equalization, blind separation of sources and time
delay estimation [2, 3, 4, 5, 6]. Most of these HOS algorithms
are based on the fourth order statistics.
In this paper, we focus an the estimation problem of the sec-
ond and fourth order statistics, which are the mostly used
ones.

By definition [7], therth order momentµr of a stochastic
signalX is:

µr = E[Xr] (1)

whereE is the mathematical expectation. Therth order cu-
mulant ofX can be calculated from its moments, by using
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the Leonov-Shiryayev formula1 [9], [10]:

Cumr[X ] = Cum[X, . . . , X ]

=
∑

(−1)k−1(k − 1)!E[Xv1 ]E[Xv2 ] . . . E[Xvp ](2)

By using this relationship, we calculate the 4th order cumu-
lant ofX :

Cum4[X ] = E[X4] − 4E[X ]E[X3] − 3E2[X2]

+12E2[X ]E[X2] − 6E4[X ]. (3)

For a zero-mean stochastic signal2, the second order cumu-
lant is equal to its second order moment and its 4th order cu-
mulant becomes:

Cum4[X ] = E[X4] − 3E2[X2]. (4)

2. Classical estimator
LetX to be a zero mean stochastic signal wherexi is an event
(or a signal sample) ofX (1 < i < N ). The classic estimator
of therth order moment ofX is given by:

µ̂r =
1

N

N∑

i=1

xr
i . (5)

It is easy to verify that (5) is an unbiased estimator of therth
order moment ofX (i.e E[µ̂r] = µr).
To estimate the 4th order cumulant ofX , we can derive an
estimator from the Leonov-Shiryayev formula (4):

̂Cum4[X ] = µ̂4 − 3µ̂2

2
, (6)

It is proved [11, 10] that the estimator (6) is a biased estimator
and the estimation error decreases proportional to1

N
. In fact,

by using (5) and (6) we can write:

̂Cum4[X ] = µ̂4 − 3µ̂2

2
,

=
1

N

N∑

i=1

x4

i −
3

N2

N∑

i,j=1

x2

i x
2

j , (7)

1The original formula shows the relationship among the cumulant of r
stochastic signalsXi (i = 1, . . . , r) and theirs moments of orderp, p ≤ r:

Cum[X1, . . . , Xr ] =∑
(−1)k−1(k − 1)!E[

∏

i∈v2

Xi]E[
∏

j∈v2

Xj ] . . . E[
∏

k∈vp

Xk]

where the addition operation is over all the set ofvi (1 ≤ i ≤ p ≤ r) andvi

compose a partition [8] of{1, . . . , r}.
2In many applications, the stochastic signalX is zero mean signal.



And the estimator expectation becomes:

E[ ̂Cum4[X ]] = µ4 −
3

N
(µ4 + (N − 1)µ2

2
)

= Cum4[X ] −
3

N
(Cum4[X ] + 2µ2

2).(8)

It is easy to prove that:

̂Cum4[X ] =
N + 2

N(N − 1)

N∑

i=1

x4

i −
3

N(N − 1)

N∑

i,j=1

x2

i x
2

j ,

(9)
is an unbiased estimator for the fourth order cumulant of
X . The estimation error between the two estimators (7) and
(9) depends at first on the samples numberN and on the
statistics ofX . By experimental study, we found that when
N > 100, the estimation error will become very small (see
figure 1).
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Figure 1. The estimation error for the classical estimator of
the fourth order cumulant.

The estimator (5) is not an adaptive one, but it is easy to
force it to be an adaptive one:

µ̂r{k} =
1

k

k∑

i=1

xr
i =

(k − 1)µ̂r{k − 1} + xr
k

k
(10)

whereµ̂r{k} is the estimator of therth order moment at the
kth iteration. Finally, by using (9) and (10) we can say that
the classical adaptive estimator for the 4th order statistics is:

µ̂2{k} =
(k − 1)µ̂2{k − 1} + x2

k

k
(1 ≤ k ≤ N)

µ̂4{k} =
(k − 1)µ̂4{k − 1} + x4

k

k
(1 ≤ k ≤ N)

̂Cum4[X ]{k} =
k + 2

k − 1
µ̂4{k} −

3k

k − 1
(µ̂2{k})

2 (11)

(1 < k ≤ N)

This algorithm is very simple and its convergence
is very fast, but it may have difficulty to converge
when the signal is non-stationary (see section 4).

3. Low-pass estimators
The classical estimator is not the only estimator used in the
literature to estimate the fourth order statistics. Many authors

use an adaptive estimators, these estimators are named
low-pass estimators:

µ̂2{k} = (1 − α)µ̂2{k − 1} + αx2

k

µ̂4{k} = (1 − γ)µ̂4{k − 1} + γx4

k

̂Cum4[X ]{k} = µ̂4{k} − 3(µ̂2{k})
2 (12)

where(1 ≤ k ≤ N). The greatest advantage of this estima-
tor consists on that it is very simple and it can be used even
when the signal is non-stationary (see next section). The ma-
jor problems of this estimator consist on the choice of the
values ofα andγ, and the variance of the estimation error
depends on the signal power (see also the next section).
To estimate the fourth order cumulant, Amblard and Brossier
[12] proposed another adaptive low-pass algorithm. Their al-
gorithm avoids the estimation of the fourth-order moment, in
fact:

µ̂2{k} = (1 − α)µ̂2{k − 1} + αx2

k

̂Cum4[X ]{k} = ̂Cum4[X ]{k − 1}

+γHk( ̂Cum4[X ]{k − 1}) (13)

with:

Hk( ̂Cum4[X ]{k − 1}) =

x4

k − 3x2

kµ̂2{k − 1} − ̂Cum4[X ]{k − 1}. (14)

The quantityx4

k−3x2

kµ̂2{k−1} is a kind of instantaneous

estimate of the cumulant, so thatHk( ̂Cum4[X ]{k−1}) mea-
sures the distance between the previous valuêCum4[X ]{k−
1} and the instantaneous estimate. This algorithm is simple
and asymptotically unbiased, but it is relatively slow to con-
verge. Amblardet al. [13] apply their algorithm into different
application: transient detection, blind deconvolution and tim-
ing recovery in communication.

4. Experimental results
In this section, we present some experimental results to

compare the three estimators (11), (12) and (13). And we es-
timate the second and the fourth order statistics using these
different algorithms. The estimation results (of the threees-
timators) and the theoretical values (15) are plotted by using
different color lines as follows:

• The theoretical values are plotted using a black line.

• The red line corresponds to the classical estimator.

• The blue line corresponds to the low-pass estimator.

• The green line corresponds to Amblard’estimator (just
for the fourth order cumulant).

At first, let us consider the case when the signalX is a white,
zero-mean and stationary signal with a uniform probability
density function (pdf). The fourth order statistics of thissig-
nal are equal to:

E[X2] =
A2

3

900



200 400 600 800 1000
N

0.2

0.4

0.6

0.8

1

Pow Second order moment

200 400 600 800 1000
N

0.5

1

1.5

2

M4 Fourth order moment

200 400 600 800 1000
N

-1.5

-1

-0.5

0.5

C4 Fourth order cumulant

Figure 2. White, zero-mean and stationary signal:α = 0.01,
γ = 0.03.

E[X4] =
A4

5

Cum4[X ] =
−2A4

15
(15)

WhereA is the maximum amplitude ofX . For stationary
signal, the classical estimator (11) converge very fast and
it seems that it gives better performances than the other
estimators (see figure 2).

As we said in the previous section, the performances
of the low-pass estimator (12) and the convergence speed
of Amblard-Brossier estimator depend on the value of two
parametersα andγ. Thus, when we decrease (resp. increase)
the values ofα and γ than the convergence speed will
decrease (resp. decrease) but the variance of the estimation
error will increase (resp. decrease). For the same signal and
for different values ofα andγ, we can observe in figure 3 the
variation of the estimator performances.

Unfortunately, even though the classical estimator was the
good estimator for stationary signal, becomes useless for a
non-stationary signal. For example, in figure 4, we estimate

2000 4000 6000 8000 10000
N

0.25

0.5

0.75

1

1.25

1.5

Pow Second order moment

2000 4000 6000 8000 10000
N

0.5

1

1.5

2

2.5

M4 Fourth order moment

2000 4000 6000 8000 10000
N

-5

-4

-3

-2

-1

1
C4 Fourth order cumulant

Figure 3. White, zero-mean and stationary signal:α = 0.001,
γ = 0.003.

the second and the fouth order statistics over a 30000 samples
of an iid zero-mean non-stationary signal, this signal com-
poses of four parts: uniform pdf (5000 samples), Gaussian
pdf (3000), uniform pdf (10000) and the last part has a Gaus-
sian pdf (12000). We can observe in the same figure 4 that
the estimation error variance of the low-pass estimator de-
pends on the signal variance, but it converged faster than the
Amblard-Brossier estimator.
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Figure 4. Non-stationary signal:α = 0.01, γ = 0.001.

5. conclusion
In this paper, we present an experimental study to compare

three estimators (classical estimator, low-pass estimator and
Amblard-Brossier estimator) of higher order statistics of
real signal. The first two estimators can be used to estimate
the moment of any order, and they are unbiased estimators
for the moments. In general case, the cumulant estimators
of any order (greater than 3) are biased (except the fourth
order cumulant estimator in (11) and the Amblard-Brossier
estimator which is asymptotically unbiased estimator alsofor
the fourth order cumulant).

For stationary signals, the classical estimator converge
very fast and gives better performance than the two other
estimators. And the performance of the low-pass estimator
and Amblard-Brossier estimator depend on the choice of two
parametersα andγ.

For non-stationary signals, the classical estimator has a
real problem to converge. Thus, in this case it will be bet-
ter to use the low-pass or the Amblard-Brossier estimator. To
estimate the fourth order cumulant of non-stationary signals,
the performance of Amblard-Brossier estimator is better in

general than the low pass estimator because the estimation er-
ror variance of the low-pass estimator depends on the signal
variance.
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