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Abstract. This manuscript deals with the blind source separation prob-
lem with an instantaneous but dynamical mixture model. This study is
limited to the case when the number of sources is time-variant. Theoreti-
cally, when new sources are detected, a new separating matrix should be
estimated in order to extract all sources. However this effort implies an
overwhelm computational cost. Our idea consists to use the previous sep-
arating matrix which was estimated before the appearance of the new
sources. Owing to this point, the computational time and cost can be
effectively reduced compared with the conventional separation scheme.
Our new algorithm was corroborated with many simulations. Some re-
sults are given in the manuscript. The obtained and presented results
clearly show that the proposed method outperformed the conventional
method in processing time as well as in separation quality.

Keywords: blind source separation, time-variant system, dynamical in-
stantaneous mixtures, independent component analysis.

1 Introduction

In the last decade, independent component analysis (ICA) has been greatly de-
veloped [1,2]. ICA is often used to solve blind source separation (BSS) problems,
which means the estimation of original sources from their mixtures, using the
only observed signals without any knowledge about the sources and the mixing
process. Applying ICA algorithms the original sources can be estimated up to
scaling and permutation factors.

A number of researchers have been struggling with BSS problems. However,
most of the researches on BSS assume the time-invariant systems. The number of
sources is a very important factor for BSS problems. However, most of the algo-
rithms assumes that the number of sources is constant and known a priori. Ye et
al. have proposed the BSS without knowing the number of sources [3]. But they
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Fig. 1. Mixing and separating process. (a) The process before the appearance of s2(t).
Only s1(t) exists. (b) The process after the appearance of s2(t).

have not considered the change of the number. For practical use, we need a so-
lution of the BSS problems in time-variant systems, where the properties of the
mixing process and sources may change. Some researchers have proposed meth-
ods to solve the blind separation of moving sources [4,5]. When source moves, the
property of the mixing process varies, but the dimensions of the mixing matrix
and the sources are constant. Therefore we deal with the case where the number
of sources is not constant, that is, the dimensions of the mixing matrix and the
sources are variable. Until now, such a problem has not been solved. In particular
we consider the case that the number of sources increases because a decrease of
sources does not affect the subsequent separation process.

In this manuscript, in order to solve the BSS problem with the change of the
number of sources, the following conditions are assumed;

A1) The mixing process is invertible and instantaneous.
A2) There are no noise.
A3) The number of active sources is always known.
A4) The signals are real-valued.

Hereafter, the scheme of the separation coping with the case that new sources
appear is proposed. Making use of the covariance matrix of the mixed signals, a
new matrix which blocks undesired sources can be estimated. Through computer
simulations, it is clarified that the proposed method can work efficiently.

2 Problem Formulation

It is supposed that n1 sources initially exist for t < T0 and at time t = T0 new n2
sources suddenly appear, i.e., (n1 + n2) sources are active for the period t ≥ T0.
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The former sources are denoted as s1(t), the latter source s2(t). We call s1(t)
initial sources and s2(t) additional sources. We unite them into s(t):

s(t) =
[
s1(t)
s2(t)

]
. (1)

Their mixtures are observed by multiple sensors whose number m is greater than
or equal to that of whole sources (n1 + n2). Mixed signals are denoted by x1(t)
(t < T0) or x2(t) (t ≥ T0). The initial mixed signals x1(t) can be expressed as
follows (See Fig. 1 (a).):

x1(t) = [H1 H2]
[
s1(t)
0n2

]
. (2)

x1(t) can be rewritten in another way:

x1(t) = [H1 Om×n2 ]
[
s1(t)
s2(t)

]
, (3)

where H1 and H2 are m × n1 and m × n2 mixing matrices corresponding to
sources s1(t) and s2(t), respectively. Matrices H1 and [H1 H2] are assumed
to be column full rank. 0 and O are a zero vector and a zero matrix, and the
subscript shows their dimensions. The above two equations are mathematically
equivalent but physically different. In the former way it is supposed that addi-
tional sources emit no signals, while in the latter way, additional sources have
no paths to sensors. In this research, the latter case of Eq. (3) is considered be-
cause of mathematical convenience. In order to achieve BSS for x1(t), an n1 ×m
separating matrix W 1 is estimated and the separated signals y1(t) is written as

y1(t) = W 1x1(t) = PDs1(t), (4)

where P is a permutation matrix and D is a diagonal matrix which results in a
scaling factor. However, if ŝ1(t) = PDs1(t) are considered as original sources,
permutation and scaling ambiguity can be ignored.

After the appearance of new sources as shown in Fig. 1 (b), the mixed signals
x2(t) are written as follows:

x2(t) = [H1 H2]
[
s1(t)
s2(t)

]
. (5)

Then a new (n1 +n2)×m matrix W 2 =
[
W 21
W 22

]
should be estimated. The goal

of the BSS problem is to obtain the original sources s1(t) and s2(t) by estimating
a separating matrix using ICA.

3 Separation Scheme

3.1 Separation of Initial Sources

In the first stage, we estimate a separating matrix for initially existing sources
applying ICA. Without loss of generality, let us define an ideal matrix W 1 which
is represented without permutation and scaling ambiguity as follows:
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W 1 = H†
1 = (HT

1 H1)−1HT
1 , (6)

where † denotes the pseudo inverse (Moore-Penrosegeneralized inverse) operation.
Because H1 is unknown, W 1 should be estimated by applying some indepen-

dent component analysis (ICA) algorithm to the mixed signal x1(t). Inversely
using estimated W 1, H1 can also be calculated as

H1 = W †
1 = W T

1 (W 1W
T
1 )−1. (7)

In this stage, we assume that we can estimate an ideal separating matrix, oth-
erwise in the subsequent stage our method cannot avoid to fail the separation.
Using the proposed method, the separation error in this stage affects the perfor-
mance in the subsequent stage.

3.2 Separation After Sources Addition

When the appearance of the additional sources is detected, a new separating
matrix should be calculated. As well as W 1 in (6), we can represent an ideal

separating matrix W 2 =
[
W 21
W 22

]
as a function of H1 and H2:

W 2 = [H1 H2]
†

=

⎡
⎢⎣H†

1 − H†
1H2

(
HT

2 (Im − H1H
†
1)H2

)−1
HT

2 (Im − H1H
†
1)(

HT
2 (Im − H1H

†
1)H2

)−1
HT

2 (Im − H1H
†
1)

⎤
⎥⎦ , (8)

where I denotes an identity matrix with a subscript of the dimension. Note that
the matrix (Im − H1H

†
1) is symmetric and idempotent, that is, (Im − H1H

†
1)

is the orthogonal projection [6]. In the rest of this paper, (Im − H1H
†
1) is

substituted with P 1. Then the above equation can be rewritten in short form:

W 2 =
[
W 21
W 22

]
=

[
H†

1

(
Im − H2 {P 1H2}†

)
{P 1H2}†

]

=

[
H†

1 (Im − H2W 22)
{P 1H2}†

]
. (9)

W 2 is also obtained by applying ICA to the mixed signal x2(t). However, we
may suffer a computational load, because we have to estimate a big separating
matrix of size (n1 +n2)×m. The essence of our method is to reuse the estimated
mixing matrix H1 and to reduce the cost. Here, let us define a global matrix

G =
[

W 21
W 22

]
[H1 H2], which is shown in Fig. 2. If the submatrices of the global

matrix satisfy the following conditions:

W 21H1 = In1 , (10)
W 21H2 = On1×n2 , (11)
W 22H1 = On2×n1 , (12)

(13)
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Fig. 2. Global matrix after the new sources appearance

the separation problem can be simplified, because we only have to solve the
separation of the part W 22H2. The proposed scheme to estimate W 2 satisfying
the above conditions is shown below.

Given H2, W 2 in (8) can be estimated because H1 is known. However, there
is no information about H2. Here, we substitute an arbitrary nonzero matrix
A2 for H2 in W 2 of Eq. (8) and we obtain

W̃ 2 =
[
W̃ 21

W̃ 22

]
=

⎡
⎢⎣H†

1 − H†
1A2

(
AT

2 P 1A2

)−1
AT

2 P 1(
AT

2 P 1A2

)−1
AT

2 P 1

⎤
⎥⎦ . (14)

Theorem 1. For any matrix A2, the following equation is satisfied,

W̃ 22H1 = On2×n1 . (15)

W̃ 22 works as a blocker [7] of H1 even if the mixing matrix H2 is unknown.

Proof.

P 1H1 = (Im − H1H
†
1)H1

= H1 − H1H
†
1H1

= H1 − H1

= Om×n1 . (16)

Therefore W̃ 22H1 =
(
AT

2 P 1A2

)−1
AT

2 P 1H1 = On2×n1 . ��

Using Theorem 1, it is clear that W̃ 21H1 = In1 .
Hereafter the method to estimated a separating matrix Ŵ 21, which satis-

fies Ŵ 21H2 = On1×M2, is shown. For the purpose, the following equation is
calculated:

Ã2 = Cx2W̃
T

22, (17)

where Cx2 is the covariance matrix of x2(t). The covariance matrix can be
rewritten as
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Cx2 = [H1 H2] Cs

[
HT

1
HT

2

]
, (18)

where Cs is the covariance matrix of s(t). Putting Eq. (18) into Eq. (17), we
obtain

Ã2 = [H1 H2] Cs

[
HT

1
HT

2

]
W̃

T

22

= [H1 H2]
[
Cs1 On1×n2

On2×n1 Cs2

] [
On1×n2

HT
2 W̃

T

22

]

= H2Cs2H
T
2 W̃

T

22, (19)

where Cs1 and Cs2 are the covariance matrices of s1(t) and s2(t), respec-
tively. For simplicity we replace Cs2H

T
2 W̃

T

22 by M . If detM �= 0, that is,
det W̃ 22H2 �= 0, we substitute Ã2 = H2M for H2 of Eq. (9) to get Ŵ 2 =[
Ŵ 21

Ŵ 22

]
,

Ŵ 2 =

[
H†

1

(
Im − H2M {P 1H2M}†

)
{P 1H2M}†

]
. (20)

Here, we notice the following attractive property.

Lemma 1. {P 1H2M}† is a generalized inverse [8] of H2M .

Proof. A generalized inverse of a matrix B, which is denoted as B−, satisfies
BB−B = B. Thus H2M {P 1H2M}† H2M is calculated as follows:

H2M {P 1H2M}† H2M

= H2M
{
MT HT

2 P 1H2M
}−1

MT HT
2 P 1H2M

= H2M . (21)

Therefore {P 1H2M}† is a generalized inverse of H2M . ��

Then we have the following theorem.

Theorem 2. Ŵ 21 works as a blocker of H1, i.e., Ŵ 21H1 = On1×n2 .

Proof. Using Lemma 1, it is clear that Ŵ 21 is a blocker of H2;

Ŵ 21H2 = H†
1

(
Im − H2M {P 1H2M}†

)
H2

= H†
1

(
H2 − H2M {P 1H2M}† H2MM−1

)

= H†
1

(
H2 − H2MM−1)

= On1×n2 . (22)

��
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Table 1. Summary of the proposed method

Step Contents
1 Until t < T0 given x1(t), estimate W 1 by ICA, and calculate H1 = W †

1.
2 New sources appear at t = T0.
3 Choose an arbitrary matrix A2 and calculate W̃ 2 in (14).
4 Calculate Ã2 = Cx2W̃

T
22.

5 Substitute H2 with Ã2 and calculate Ŵ 2 in (20).
6 Apply ICA to x̃2(t) = Ŵ 22H2s2(t).

Since Ŵ 2 has the same property as W̃ 2, Ŵ 21 and Ŵ 22 work as blockers of
H2 and H1, respectively, so that the product of Ŵ 2 and x2(t) is calculated as
follows:

Ŵ 2x2(t) =
[
Ŵ 21H1 Ŵ 21H2

Ŵ 22H1 Ŵ 22H2

] [
s1(t)
s2(t)

]

=
[

In1 On1×n2

On2×n1 Ŵ 22H2

] [
s1(t)
s2(t)

]

=
[

s1(t)
x̃2(t)

]
. (23)

As a result, the BSS problem of x̃2(t) = Ŵ 22H2s2(t) has only to be solved. Our
method avoids to calculate the whole separating matrix W 2 by ICA. It implies
a low computational cost. The proposed method is summarized in Table 1.

4 Simulation

For the sake of clarity of the proposed method, BSS computational simulations
were conducted on a PC (Core2 Duo E4300, 1.0GB RAM) using FastICA algo-
rithm [9] implemented on MATLAB. Speech signals were used as source signals.
The number of initial sources n1 was four and the number of additional sources n2
was varied from one to three. The number of sensors m was seven and the mixed
signals were generated through a mixing matrix. The coefficients of the mixing ma-
trix were set randomly. We measured the processing time and the separation per-
formance in order to evaluate the proposed method and the conventional method,
which estimates a new separating matrix without any initialization. As a perfor-
mance measure, signal to interference ratio (SIR) was calculated as follows:

SIR =
1

n1 + n2

n1+n2∑
i=1

10 log10

∑
t y2

i,sj
(t)∑

k �=j

∑
t y2

i,sk
(t)

, (24)

where yi,sj (t) and yi,sk
(t) are ith separated signals which are contributed by a

certain source sj(t) and an interfering source sk(t), respectively. The results of
100 trials are shown. Fig. 3 (a) illustrates the processing time varying the num-
ber of the new sources. It is clear that the processing time using the proposed
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Fig. 3. The performance of the proposed method and the conventional method varying
the number of additional sources. (a) The averaged processing time with standard
deviation. (b) The averaged SIR with standard deviation.

method is significantly smaller than the conventional one. Our concern lies in the
fact to estimate as n2 ×n2 separating matrix, instead of the conventional method
that estimates (n1 + n2) × m separating matrix. Fig. 3 (b) depicts the separation
performance. It is shown that our method outperforms the conventional method
since the blockers work efficiently. Furthermore the conventional method caused
permutation problems due to re-estimation of the separating matrix. The output
channels of initial sources were different from those obtained by initial matrix,
while using the proposed method the initial sources s1(t) are given in the same
order despite the appearance of new sources.

5 Discussion

The problem of detecting the number of active sources is very important for BSS
and have been discussed by many authors [10,11,12]. Although some problems
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need to be solved, for instance when we have additional sources that appear after
estimation of the separating matrix. In this research we proposed a new method
that is based on the number of souces known a priori and the number of the
dominant eigenvalues of the covariance matrix that can be solved straightforward
using the well known FastICA algorithm. The highlight in this problem is to
determine the sources dimension that is not solved easily by any BSS algorithm.

Until now we discussed the separation in the case when new sources appear.
In addidion, the separation with a disappearance can be solved by a simple pro-
cedure based on the columns of the mixing matrix. Moreover, if a disappearance
is detected the output energy become zero, which make the algorithm identify
the vanished sources. Consequently, the corresponding columns of the vanished
sources are removed from the mixing matrix, which was estimated before the dis-
appearance, resulting in a new mixing matrix. Finally a new separating matrix
is given as a pseudo inverse of the mixing matrix.

6 Conclusion and Future Works

In this manuscript we have proposed a scheme to separate mixed signals in
the situation of new sources appearing. Utilizing the covariance matrix of the
mixed signals, blockers of the initial sources and the additional sources can be
obtained. As a result, blind separation of the new sources is only needed. Thus
the computational load can be reduced compared with the conventional method.
Through a computer simulation validity of the proposed method is shown.

Assuming that the matrix M = Cs2H
T
2 W̃

T

22 is nonsingular, namely W̃ 22H2
is also regular. To obtain W̃ 22 an arbitrary matrix A2 is used, further investiga-
tion about the way of choosing A2 is needed such that W̃ 22H2 = {P 1A2}† H2
is full rank.

The next goal is the extension of the proposed method to convolutive mixture
to achieve blind separation of audio signals.
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