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Abstract—The detecting of an occupied frequency band is a
major issue in cognitive radio systems. The detection process
becomes difficult if the signal occupying the band of interest
has faded amplitude due to multipath effects. These effects
make it hard for an occupying user to be detected. This work
mitigates the missed-detection problem in the context of cognitive
radio in frequency-selective fading channel by proposing blind
channel estimation method that is based on scattering transform.
By initially applying conventional energy detection, the missed-
detection probability is evaluated and if it is greater than or
equal to 50%, channel estimation is applied on the received signal
followed by channel equalization to reduce the channel effects.
In the proposed channel estimator, we modify the Morlet wavelet
by using its first derivative for better frequency resolution.
A mathematical description of the modified function and its
frequency resolution is formulated in this work. The improved
frequency resolution is required to follow the spectral variation
of the channel. The channel estimation error is evaluated in
the mean-square sense for different channel settings and energy
detection is applied to the equalized received signal. The simula-
tion results show improvement in reducing the missed-detection
probability as compared to the detection based on principal
component analysis. This improvement is achieved on the expense
of increased estimator complexity, which depends on the number
of wavelet filters as related to the channel taps. Also, the detection
performance shows an improvement in detection probability for
low signal-to-noise scenarios over principal component analysis-
based energy detection.

Index Terms—Channel Estimation, Cognitive radio, Scattering
transform, Spectrum Sensing.

I. INTRODUCTION

The foundation of the cognitive radio (CR) concept is a
consequence of the absolute necessity to fulfill the require-
ments of high data rate communication [1]. This urgency is
due to the natural limitaion of the scarce radio frequency. In
CR systems, a cognition cycle, defined by the Federal Com-
munication Committee (FCC), performs monitoring, awarness
and management of the intended frequency band in order to
provide dynamic spectrum access (DSA) [2]. Among different
tasks performed by a CR system, spectrum sensing (SS) is one
of the vital tasks in the cognition cycle that provides new paths
to access locally unused frequency bands.

In accordance to its crucial importance, spectrum sensing
confronts several challenges that limit the overall spectral ef-
ficiency [3], [4]. Normally, primary users (PUs) (i.e., licensed
users) can claim their licensed frequency bands any time while
CR users are operating on them. Hence, it is important to

identify the presence of the PUs as fast as possible to keep the
quality of service (QoS) offered to PUs. Therefore, selection
of the sensing duration conducts a tradeoff between sensing
accuracy and sensing speed. Also, the tradeoff between sensing
time and thethroughput of the secondary user (SU) (i.e., CR
user) is another issue in CR. These tradeoffs have been a great
concern of many researches to find the optimum SS scenario
[5], [6]. Another important challenge is to specify the sensing
frequency which includes how often spectrum sensing should
be performed. This design parameter depends on the temporal
features of the PU in the intended band [4]. For instance, the
sensing frequency can be relaxed if the PUs statues change
slowy with respect to time. This is the case of the detection
of white spaces of TV channels. However, this is not the
case when the SU is checking spectral opportunities in the
industrial, scientific, and medical radio band (ISM band). In
such scenarios, the sensing frequency must be increased to
protect the PU from any possible interference with SU.

The PU transmitter detection (PTD) methods are concerned
with the monitoring of the PU activity in the at SU receiver.
Depending on its design, CR systems apply one of the
spectrum sharing techniques, namely: interweave, overlay, or
underlay. The PTD techniques can be classified into blind-
based and signal-specific-based techqniues [7]. The former
techniques do not require prior information about the PU
characteristics, whereas the latter implies the need for such
information to detect the PU signal.

Many researches have been made to improve the PU
detection taking into consideration the aforementioned chal-
lenges. For example, the authors in [8] use adaptive detection
threshold so that the detection results are affected by the
noise uncertainity. Further, the concept of principal component
analysis (PCA) has been applied in [9] as a pre-processing
step of the received signal before detection in which muli-
ple antennas are used to improve spectrum sensing. For a
fine detection accuracy, a modification has been made to
the fast Fourier transform accumulation (FAM) algorithm in
cyclostationary feature detection (CFD) to improve detection
results [10]. Also, to provide reliablity of PU detection in a
low signal-to noise-ratio (SNR) environment, scattering-based
energy detection (ED) has been introduced in [11].

Among different challenges facing PU detection, we tackle
the problem of missed-detection of a PU faded signal through
a blind channel estimation using a scattering transform. The



missed-detection problem occurs when the transmitted PU
signal undergoes multipath fading due to the nature of the
propagation channel. As a result, the signal components may
add destructively such that the received signal strength be-
comes very weak. Eventually, despite the PU presence, the
detector fails to detect it. Therefore, channel estimation and
equalization are needed to reduce the multipath fading effect.

The main contribution of this manuscript is to estimate
the channel between the PU base-station and the CR receiver
using a scattering transform. The latter has the advantage of
providing sparse representation of an analyzed signal [12]. In
the proposed method, we modify the Morlet Wavelet (MW)
function to gain high frequency resolution by using its first
derivative. The modified function is called Morlet-Derivative
Wavelet (MDW) which shows better frequency localization
than the MW function. We use the MW since it is suitable for
oscillatory signals. Better frequency resolution is important
to follow the varaition of a frequency-selective channel. This
technique is compared with PCA-based energy detection. In
this work, energy detectors are used due to its simple im-
plementation and reduced complexity as compared to feature-
based detectors. Also, they are an appropriate choice if the
complexity of the CR transmitter or receiver may be increased
for performance improvement. The proposed method shows
reduction of the missed-detection probability after applying
the blind channel estimation and employing energy detection
to the equalized received signal.

II. REPRESENTATION OF SIGNALS BY SCATTERING
TRANSFORM

A scattering network analyzes a signal through complex
modulus wavelet decomposition followed by an averaging
process [13]. Through this iterative procedure, signals features
are enhanced according to the signal projection of the chosen
wavelet bases. In literature, the wavelet transform of a given
signal s(t) is a convolution operation using the operator ∗ with
a low-pass filter φ(t) of a time support T , as well as convolving
s(t) with the dilated wavelet function ψ(t)λ∈Λ defining a band
pass-filter, with λ being its center frequency and Λ is the set of
all centers. A chosen mother wavelet is dilated and translated
to analyze the signal, such that the dilated function is given
by [13]:

ψλ (t) = λψ(λ t),Ψλ (ω) = Ψ(
ω

λ
) (1)

where Ψλ (ω) is the Fourier transform of ψλ (t). The wavelet
transform (WT ) of s(t) is defined as:

WT{s(t)}= (s(t)∗φ(t),s(t)∗ψλ (t))t∈ℜ,λ∈Λ (2)

The complex wavelet transform modulus is then applied to
remove the phases of all wavelet coefficients; Hence, we get:

|WT{s(t)}|= (s(t)∗φ(t), |s(t)∗ψλ (t)|)t∈ℜ,λ∈Λ (3)

Starting at the network root, the signal of interest is processed
by low-pass filtering so the scattered output is given by [13]:

SC0{s(t)}= s(t)∗φ(t) (4)

To regain high frequency information, the complex modulus
wavelet transform applied by the opertaor U1{s(t)} gives:

U1{s(t,λ1)}= |s(t)∗ψλ1(t)| (5)

so averaging out the operator gives:

SC1{s(t,λ1)}=U1{s(t,λ1)}∗φ(t) (6)

where SC1{s(t,λ1)} is the first order scattering coefficients.
These coefficients are computed with wavelets ψλ1(t) and
Q1 is defined as the number of wavelets per an octave in a
constant-Q bank of filters. For any order an M≥ 1, the iterated
wavelet modulus operator is given by [13]:

UM{s(t,λ1,λ2, ...λM)}= ||||s(t)∗ψλ1(t)| ∗ψλ2(t)| ∗ ...| ∗ψλM (t)|
(7)

thus, the scattering coefficients at order M are defined by:

SCM{s(t,λ1,λ2, ...λM)}=UM{s(t,λ1,λ2, ...λM)}∗φ(t) (8)

III. CHANNEL ESTIMATION BY SCATTERING TRANSFORM

A. The System Description

The motivation behind the proposed technique is to improve
the PU detection in a multipath fading environment by re-
ducing the missed-detection probability. To accomplish this,
the PU detection is first performed by applying an energy
detection. This step is important to specify if the CR receiver
has a missed detection probability greater than or equal to
50%. The system architecture is illustrated in figure 1. In
general, the detection process is viewed as hypothesis testing
problem which is defined mathematically by:

y(n) = θ .x(n)+w(n) (9)

where θ is a Boolean parameter indicating absence or presence
of PU. x(n) is the faded PU signal, w(n) is the noise signal and
y(n) is the received signal by CR receiver. θ = 0 means that
we have H0 hypothesis (i.e., PU is absent), otherwise θ = 1,
and H1 is declared (i.e., PU exists). The energy of the received
signal is measured and compared with a detection threshold.
The test statistic for ED can by defined by [14]:

T.S[y] =
1
K

K

∑
k=1
|yk|2

H1
≷
H0

γ (10)

where γ is the detection threshold and T.S[y] is a random
variable representing the energy of the K-fading components
of the received signal. It follows a Gaussian distribution for K
is large enough to invoke the Central Limit Theorem (CLT). If
the ED declares H1, the missed-detection probability, denoted
by PMD, is calculated [14]:

PMD = Pr{T [y]< γ|H1} (11)

If it exceeds 50%, then the detector declares a missed-detection
case. It means that there is a useful information in the received
signal but it is very weak to be detected, so that channel
estimation and equalization are employed to enhance the
detection and the identification of a PU.



The proposed channel estimation technique is blind-based,
which means that no pilot symbols or preambles are used to
get the channel information. However, we apply a scattering
transform using Morlet-Derivative Wavelet to analyze signal
variations due to channel impairements. It is shown in [15] that
scattering operators can be used to characterize a structure of
the pitch filter of voiced and unvoiced sound waves. However,
this characterization assumes a very narrow filter structure.
In this work, we introduce th use of a first order scattering
transform to estimate the fading channel coefficients through
the modification of the Morlet function by using its first
derivative in the wavelet analysis. This modification proves
better frequency localization than the classic Morlet function.
This localization is essential to capture the spectral variation.

The sparsity of scattering coefficients reflects essential vari-
ations and features in the signal through the layers of the
scattering network. Moreover, since the signal is analyzed
through a cascaded wavelet modulus and averaging process,
the noise contribution is reduced through the network layers.
This is due to the fact that the projection of the noise on
the wavelet bases becomes very low. Needless to say, the
choice of the mother wavelet function is important because it
must resemble the intended signal to acquire its variation. In
a passband communication, sinusoidal signals are used; Thus,
the so-called Morlet-Derivative function becomes a suitable
choice.

By getting the channel information,a channel equalization
is performedd using the minimum-mean-square error (MMSE)
method to remove the channel effect, and thus the equalized
received signal is processed again by ED to accurately identify
the PU [16] rather than modifying the threshold as mentioned
in [8].

B. Mathematical Model

This section describes the mathematical model of the pro-
posed channel estimation method. In general, the PU signal is
a digital modulated analytic signal and the wavelet function
used in the channel estimation step in is a complex analytic
wavelet. Also, the multipath propagation channel is assumed to
be a discrete, time-invariant, and frequency-selective Rayleigh
fading channel [17]. A good example of such channel is
the two-ray Rayleigh channel model or the three-ray Rician
channel model if a strong line-of-sight (L.O.S) component
exists. The general model for the received signal can be
expressed in discrete-time representation by:

y(n) = ∑
k

h(n;k)s(n− k)+w(n) (12)

where h(n;k) is the discrete channel impulse response given
as a function of the discrete time index n = 0,1, ...N−1, with
N being the sequence length, and the time-shift k. The signal
s(n) is the digital modulated transmitted PU signal and w(n) is
the noise samples at the CR receiver. For time-invariant, linear,
and frequency-selective channel, h(n;k) is reduced to h(0;k) =
h(k). It means that, although the channel behavior does not
vary with respect to time, each propagation path had different

channel attenuation and path delay. So, h(k) is defined as the
time-invariant impulse response of the transmission channel to
a unit impulse transmitted at time 0. To define s(n) and h(k),
consider the passband representation of the transmitted signal
s(n) such that the real valued signal is expressed by:

s(n) = A(n)cos(2π fcn+φ(n)) (13)

where A(n) is the baseband signal with phase of φ(n). Since
the analytic representation of signals is more appropriate in
practical signal processing, we define z(n) as the analytic
version of the signal s(n) that is given by:

z(n) = sa(n) = zr(n)+ jzi(n) (14)

where sa(n) refers to the analytical version of s(n) and zr(n)
and zi(n) are its the real and imaginary parts, respectively.
The real part zr(n) is the origional real-valued signal s(n),
whereas the imaginary part zi(n) is the Hilbert transform of
s(n). Accordingly, we can rewrite sa(n) as:

sa(n) = A(n)[cos(2π fcn+φ(n))+ jsin(2π fcn+φ(n))] (15)

so equivalently we obtain:

sa(n) = A(n)exp( jφ(n))exp( j2π fcn) (16)

From (13) we define the complex envelope of the analytic
signal sa(n) by:

Ã(n) = A(n)exp( jφ(n)) (17)

The time-invariant channel can be define by:

h(k) =
K

∑
k=1

akδ (k− τk) (18)

where ak and τk are respectively the kth path attenuation and
the path delay of the propagation channel, and K denotes
the number of propagation paths in the transmission medium.
Thus, the received signal can be expressed by:

y(n) = ∑
k

h(k)Ã(n− k)exp( j2π fc(n− k))+w(n) (19)

By assuming that the received signal model in (16) follows a
two-path Rayleigh fading or three-path Rician fading model
where the transmitter and the receiver are fixed (The case
of transmission via a terrestrial microwave radio link). This
received signal is processed by the proposed system at the SU
receiver. The mathemaical description of the two processing
stages following initial energy detection are described here.

1) Channel Estimation: An accurate detection decision
depending on the channel estimates assumes the independent
operation of signal detection and channel estimation or charac-
terization of the underlying channel coefficients is impractical.
To address this problem, the received signal will be processed
by scattering transform to obtain the channel coefficients.

The Morlet wavelet function is a sinusoidal function win-
dowed by a Gaussian function. To describe the Morlet-
Derivative function, let us consider the complex analytic
Morlet function ψM(t) which is defined in time domain by:



Fig. 1: A block diagram represents the hybrid blind signal detection method; y(n) is the received PU signal, yeq(n) stands for
the equalized received signal, ĥ represents the estimated channel impulse response, and ψMD(n) denotes the

Morlet-Derivative function .

ψM(t) = [exp(− j2π f0t)− exp(−2π
2 f 2

0 σ
2)].exp(

−t2

2σ2 ) (20)

where f0 is the sinusoidal frequency,and σ represents the
Gaussian spread in time. The Fourier transform of ψM(t) is
given by:

ΨM( f ) =
√

2πσ [exp(−2π
2
σ

2( f − f0)
2)

− exp(−2π
2
σ

2 f 2)exp(−2π
2
σ

2 f 2
0 )]

(21)

The Morlet-Derivative function is defined by:

ψMD(t) =
d
dt

ψM(t) (22)

based on Fourier transform properties, (22) can be represented
in the frequency-domain (FD) by:

ΨMD( f ) = j2π f ΨM( f ) (23)

In literature, the Morlet wavelet function is an analytic wavelet
that has good time resolution that is controlled by the time-
spread of the Gaussian window but poor frequency resolution.
Fig. 2 shows a comparison between the Morlet and the
Morlet-derivative functions regarding frequency resolutions
and support. From the figure, it is shown that the Morlet-
derivative is admissible, compactly supported with better fre-
quency resolutionn than the Morlet wavelet function.

To calculate the frequency resolution of the Morlet-
Derivative function, we start by the general definition of the
frequency resolution ∆ f that comes from:

∆
2
f =

∫
∞

−∞
f 2|ψ( f )|2d f∫

∞

−∞
|ψ( f )|2d f

(24)

to simplify the numerator of (24), we use of the following
formula from famous Gaussian integrals that is given by:

Fig. 2: Illustration of the frequency localization of the real
Morlet and the Morlet-Derivative wavelet functions

∫
∞

−∞

x−n exp(−ax2 +bx)dx =
√

π

a
exp(

b2

4a
)

n/2

∑
k=0

n!
k!(n−2k)!

.
(2b)n−2k

(4a)n− k
(25)

where a = 4π2σ2 and b are constants, and n and k are
integers. By using (24) and (25), we obtain the expression for
the frequency resolution of the Morlet-Derivative given by:

∆ f =
f 2
0 +

√
3

2a −0.5

f0 +
1

4a f0

(26)

where f0 is the frequency of the MW.
To illustrate how to estimate the channel fading coefficients

using scattering transform, let us recall the noisy received



signal mentioned in (9) and get its discrete Fourier transform
given by:

Y (l) = H(l)S(l)+W (l) (27)

where l is the discrete frequency. For example, with three-path
propagation model, we can modify (15) and get its discrete
Fourier transform and substitute the result in (27) we get:

Y (l) =(c0 + c1 exp(− j2πk1l/N)

+c2 exp(− j2πk2l/N))Sa(l)+W (l)
(28)

where N denotes the sequence length of the received
signal,Y (l) is the received signal represneted in frequency
domain, c0, c1 and c2 are path attenuations, and the terms
2πk1/N and 2πk2/N are the relative frequencies indicating
the phase shifts caused by the path delays. Also, the frequency
domain of sa(n) is given by:

Sa(l) = NÃ(l− lc) (29)

where lc is the discrete frequency of the carrier. To apply
scattering transform in the frequency domain, the analytic
signal must be processed by a constant-Q filter bank formed
by dilating Morlet-Derivative wavelets. Refering to the three-
path model, ψMD(t) must be shifted in frequency such that
the maximum wavelet frequency (i.e., the frequency value at
which the wavelet peak appears) coincides with the relative
shifted frequency of the related to multipath components.
To illusrtate the sequence of operations, let us at first shift
the Morlet-Derivative wavelet function with an angular shift
frequency ωsh, and then calculate the wavelet tranform of the
received signal:

WT{y(n)}= y(n)∗ (ψMD(n)exp( jωsh))

+w(n)∗ψMD(n)exp( jωsh)
(30)

where ωsh is given by:

ωsh =
2π

N
(m.lch− lψ) (31)

where lch is the frequency location of the discrete channel
impulse response ,m denotes a multiple integer of lch, and
lψ is the maximum wavelet frequency.Here, we assume that
the path delay is defined in terms of the symbol lengths. For
instance, if the number of samples per transmitted symbol is
about 20 samples, we can set the path delay k to be equal to
5 which means the path delay of a reflected signal component
becomes half the symbol time. Denoting the symbol time by
ksym, the path delay in this case becomes equal to 0.5ksym.
Thus, the frequency location of a multiptah component is 2lsym
for lsym = 1

0.5ksym
.

By getting the Fourier transform of (30), we get:

F .T (WT{y(n)}) = D(l)+W (l) (32)

where F .T (.) is the Fourier transform. D(l) and W (l) are
the filtered faded PU signal with the wavelet function and the
filtered noise spectrum, respectively:

D(l) = Sa(l)H(l)Ψ(l− lsh) (33)

W (l) =W (l)ΨMD(l− lsh) (34)

The function in (34) can be reduced to
√

N0/2ΨMD(l) if the
noise is a bandpass white Gaussian noise. Accordingly, scaled
noisy version of the channel coefficients are given by:

F .T (WT{y(n)}) = c.Ĥ(l) (35)

where Ĥ(l) is the deduced channel coefficient and c is
a scaling constant resulting from the wavelet peak and the
ampitude of Sa(l).

2) Channel Equalization: A perfect equalization process
can reverse the distortion of signals transmitted by the channel.
Zeroforcing (ZF) and Minimum-Mean-Square Error (MMSE)
are examples of channel equalizers. ZF has the disadvantage
of boosting-up the noise level at the equalziers output. As for
the MMSE equalizer and to get the MSE we can integrate the
power spectrum density and minimize it. We need to find the
transfer function G( f ) such that the MSE is minimized. The
error is given by [18]:

MSE = E|G(l)Y (l)−Sa(l)|2 (36)

accordingly, the required function is expressed by [18]:

G(l) =
H∗(l)

|H(l)|2 + 1
SNR

(37)

where H∗(l) is the conjugate of origional channel transfer
function H(l) and SNR is the signal-to-noise ratio.

IV. NUMERICAL RESULTS AND ANALYSIS

This section illustrateS the detection improvement gained
through performing channel estimation as compared to PCA-
based detector. In this work, energy detection is used to test
the efficiency of the proposed method as compared to PCA-
basd ED. In the simulations, the PU signal was considered
as a bandpass BPSK signal with carrier frequency of 20 Hz
and sampling frequency of 10 Hz. The total received sequence

Fig. 3: Distribution of Noise and Faded PU signal with
10-Taps Channel



Fig. 4: Missed detection probability PCA-based ED with
5-taps channel

length is 1000 samples such that data are transmitted in 100
blocks each consists of 10 samples. The propagation channel
is a time-invariant, fixed, frequency selective Rayleigh fading
channel. In order to apply the initial energy detection process,
we must firstly specfiy the distribution of the test statistic
defined in (10). By using an histogram to estimate the channel
distribution, for 5-taps and 10-taps channels, the test statistic
is showed to follow a Gaussian distribution. Accordingly, the
noise variance is also estimated by using an histogram and
it was used to determine the detection threshold as shown in
fig. 3 where we have faded PU signal with 10-taps Rayleigh
channel as well as the noise distribution.

Further, an imposed noise is assumed to be a circular
symmetric complex Gaussian (CSCG). Simulations for ED
and channel estimation are conducted for specifically 5-taps
and 10-taps channel settings. The tap-delays are expressed
in terms of the number of samples per data block such that
the maximum delay is equivalent to 8 samples. To evaluate
the PCA-based ED perfomance, MonteCarlo simulations have
been conducted over 106 iterations and evaluate the missed
detection probability for the two fading channels. This is
shown in fig. 4 and figure 5.

By applying channel estimation using the proposed method,
the mean-square error of the channel estimate was evaluated
as shown in fig. 6 for 5,7 and 10 taps channel settings. As
the number of taps increases the number of wavelet filters
increases as well which increases the complexity but the
performance is improved as the MSE is decreased. To avoid
boosting up the noise when ZF is used as a channel equalizer,
we applied energy detection again to the equalized output and
evaluate the missed detection probability, see fig. 7.

It is obviuos from fig. 7 that the missed detection proba-
bility is reduced after using channel estimation by scattering
transform although the number of required filters increases
with the number of the channel taps. Therefore, the channel

Fig. 5: Missed detection probability PCA-based ED with
10-taps channel

Fig. 6: Mean-square error of channel estimaion with various
SNR values

estimation can increase the CR receiver complexity, but the
ED shows improvement over PCA-based ED with increased
number of antennas. Finally, the detection probability after for
using channel estimation becomes higher than the one of PCA-
based ED witth a low SNR. Indeed, a hidden signal due to
faded amplitude can be better detected. Thanks to the channel
estimation part, see fig. 8.

V. CONCLUSION

In this manuscript, blind channel estimation by scattering
transform is proposed to enhance the PU detection scenario
in CR.. In the proposed method, we modified the Morlet
wavelet function by using its first derivative for better fre-
quency resolution and formulate a mathematical description
for the frequency resolution of the Morlet-Derivative wavelet
function. This function is used as the filtering function in



Fig. 7: Missed detection probability for variuos
signal-to-noise ratio for 5-taps channel after channel

estimation and equalization

Fig. 8: Detection performance for using channel estimation
as opposed to PCA-based ED for 5-taps channel

the constant-Q wavelet filter bank in the scattering transform.
We intially performed ED and then evaluated the missed-
detection probability, if this probability is greater than or equal
to 50%, channel estimation is applied such that the first order
scattering coefficients reveal the discrete channel impulse
response. Following this step, a MMSE channel equalization
is performed and energy detection is applied to the equalized
received signal. The results show an improvement in reducing
the missed-detection probability after applying the channel es-
timation over PCA-based ED despite the increased complexity.
By applying the channel estimation, the detection performance
is also improved with low SNRs. As for future work, one
planning to apply feature detection to specifically identify the
PU and improve the overall performance of spectrum sensing.
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