
FPGA Implementation of a Parameterized Fourier
Synthesizer

R. YANG∗ †, J.G. WANG∗, B. CLEMENT† and A. MANSOUR†
∗College of Engineering, Ocean University of China, Qingdao 266100, China

Email: yang.rui@ensta-bretagne.fr, ckyiqi@ouc.edu.cn
†Lab-STICC, UMR CNRS 6285, ENSTA Bretagne, 29806 Brest Cedex 9, France

Email: benoit.clement@ensta-bretagne.fr, Mansour@ieee.org

Abstract— Field-Programmable Gate Array (FPGA) offers ad-
vantages for many applications, particularly where missions are
complex and time performance is critical. For small-production
digital acoustic synthesizers, FPGA can achieve the above-
mentioned tighter system requirements with low total system
costs on single chip. In this manuscript, a real-time acoustic
synthesizer is implemented using Fourier series algorithm on
Altera’s Cyclone II FPGA chip. This work emphasizes systematic
designs and parallel computations. The proposed system includes
a flexible processor and a parallel parameterized acoustic module.
On one hand, the Nios II embedded processor, which is relatively
low-speed component, is used to generate commands and config-
ure high-speed acoustic module parameters. On the other hand,
acoustic module which should require high-speed components
contains 4 parallel architectures to gain high-speed simultaneous
calculus of 4 independent digital timbres. Every timbre is
equivalent to 16 parallel high-precision harmonic channels with
0.3 % frequency error. Experimental results corroborate the fact
that a single FPGA chip can achieve complex missions and attain
real-time performances.

I. INTRODUCTION

Since the last two decades, FPGA has become widely used
in electronic engineering applications after its first product in
1984. Comparing with Application-Specific Integrated Circuit
(ASICs), FPGA is considered as the best technical solution for
small-production applications. According to [1], first FPGA
circuits are slower, less energy efficient and larger size than
fixed ASICs. However, FPGA has many advantages: Flex-
ibility, reconfigurability and low-cost. New technology and
devices enhance these features and make FPGA more and
more popular in many electronic applications.

It is well known that FPGA has the ability to implement any
combinational function implemented on ASICs. Programming
FPGA to form complex system logical functions can be
achieved by interconnecting Look-Up Table (LUT) elements
on a single chip [2].Comparing to digital computer architec-
tures, such as Von Neumann architecture or Harvard archi-
tecture [3], FPGA can provide more flexibility and achieve
better calculation performance. On one hand, FPGA allows
designers to make serial and parallel mixed designs that are
more flexible for complex missions. On the other hand, parallel

1R. Yang is a joint PhD student between ENSTA Bretagne and Ocean
University of China.

2This work was supported by the China Scholarship Council.

designs can produce more simultaneous calculus for high-
speed applications. In this paper, we focus on the case of
digital acoustic synthesizers.

The primary aim of a synthesizer is to generate different
acoustic timbres. Each timbre can be distinguished from others
by the quantity of different harmonics. Acoustic synthesizers
can be divided into two kinds: Analog and digital synthesizers.

Actually, analog synthesizer applications have good sound
quality and are based on many well-defined algorithms, such as
Frequency Modulation (FM) which is popular and simple to be
implemented on electronic devices. Recently, more convenient
digital approach emerges with similar ideas. Main advantages
of digital synthesizers comparing analog ones are robustness,
cheap prices and simple architectures.

Two popular digital synthesizers focus on Direct Digital
Synthesizer (DDS) [4] and FM synthesizers [5]. The crucial
technique in DDS is the phase-amplitude conversion architec-
ture [6]. The main drawback of DDS is still the larger size of
needed ROM tables for higher performance. FM approaches
do not suffer from these inconvenient and they intend to mod-
ulate the frequency of carrier wave for generating the timbres.
In fact, FM methods can save more hardware resources than
DDS. The major drawback of FM techniques is still the need
for an expert to tune the multitude parameters. To evaluate
the ability of FPGA to handle a large amount of data, we
select the Fourier series, namely an extended DDS application,
instead of FM which can be easily implemented on FPGA. Our
work challenges FPGA on special aspect of solving complex
missions and parallel calculations. It is worth mentioning that
the Fourier series designs don’t require the knowledge of
experts and parameters can be tuned automatically.

Using Fourier series, we can decompose a target timbre
F (2πf0t) as follows:

F (2πf0t) = A0 +

∞∑
i=1

Aisin(2πif0t+ ϕi) (1)

where f0 represents the frequency of the target timbre,Ai

and ϕi represent respectively the amplitude and phase of ith

harmonic. A0 is the average signal value. From the engineering
point of view, equation (1) need to be truncated at a finite order
of harmonic instead of using infinite frequency components.
In our case, all the high order harmonics that have less

energy than human hearing threshold should be ignored in
the synthesizer implementation. According to [7], the sum
in equation (1) can be truncated in worst case up to the
10th harmonic. To get better precision, we assumed the sum
truncated at the 16th harmonic is rich enough to generate a
single timbre.

In order to implement Fourier series on FPGA boards, we
designed a complete system which includes three main parts:
Human-Machine Interface, Coordinator Module (Embedded
Nios II Processor [8]) and Acoustic Module. The Nios II
Processor and the Acoustic Module are implemented on a
single FPGA chip; further details are given in the following
section.

II. SYSTEM DESIGN

As it was early mentioned, the implementation of a com-
plex application, such as acoustic synthesizer, on hardware
components is still very challenging. Serial as well as parallel
structures are both required. In the following, the whole
system architecture is described and the Timbre Module using
parallel structure and requiring high computational efforts is
emphasized.

Nios II

I2C Bus

Cyclone II FPGA

EP2C20

MAX232
WM8978

Audio Codec

UART

Audio Codec

Commands

Acoustic Module

Commands&

Parameters

Virtual Keyboards

PC: Human-Machine Interface
Commands&Parameters

panels

Adobe Audition

Acoustic Module

I2S Driver

Timbre 1

Timbre 3 Timbre 4

Timbre 2

Polyphonic Module

Digital data

Commands &

Parameters

Audio signal

Fig. 1. System Diagram of Fourier Synthesizer

A. System Architecture

In order to generate 16 harmonics at each of the imple-
mented timbres, our system can be divided into three major

parts, (the first one is realized using a PC, the two other using
FPGA), see Figure 1:

1) Human-Machine Interface: This part is done using a
classic PC architecture and it should handle the human
commands, sound generation and recording,sound anal-
ysis tools, etc.
The synthesizer user interface, Commands and Param-
eters Panel, is developed using a VC++ software to
monitor and manage the synthesizer (For example, users
can modify frequency or amplitude parameters on-line
via this interface). The audio analysis tools have been
done using available commercial software, i.e. Adobe
Audition.

2) Embedded Nios II Processor: Flexible Nios II embedded
processor is relatively low-speed comparing to parallel
architecture as it runs codes in serial sequence. In fact,
its ultimate processing speed is limited by the CPU
clock rate. However, Nios II shows better flexibility
and robustness in responding to random environmental
changes with interrupt mechanism which are ideally for
human-machine interface tasks. In our system, Nios II
is dedicated to communicate with the PC, to manage
audio codec, to respond to keyboards and to configure
acoustic module.

3) Acoustic Module: High-speed Acoustic Module can
reach real time performance by mean of parallel archi-
tectures which can solve large calculations in short time.
In the Acoustic Module we have 4 independent Tim-
bre Modules which simultaneously generate 4 different
timbres. The real time timbre data is processed in the
Polyphonic Module to get a 32 bits polyphonic audio
stream. The I2S Driver converts digital audio stream into
serial I2S [9] format and finally analog audio signal is
generated using an audio codec (such as WM8978).

B. Timbre Module

Previously, we mentioned that a timbre can be synthesized
as a truncated sum of equation (1). In this section, we focus
on the realization of the jth timbre by electronic circuits. By
adjusting A0 to be zero, adding the shape of ADSR (µj(t),
Attack-Decay-Sustain-Release envelope techniques are used to
reshape signal in time domain to mimic the acoustic sounds of
real instruments.) and multiplying by the strength parameters
(σj), equation (1) can be rewritten as:

Vj = µj(t)σj

16∑
i=1

αijsin(2πfijt+ ϕij) = µj(t)σjTj (2)

In this case, each timbre is characterized by three main
features:

a) Harmonics: Up to 16 harmonics.
b) Strength (σj) is equivalent to volume parameters.
c) Attack-Decay-Sustain-Release envelope µj(t).

Each of the above features is implemented in different stage
of the pipelined Timbre Module, see Figure 2.

Frequency

Divider

Table Router

Amplitude

Tuning

Table

Sin Wave

Table

Frequency

Divider

Phase

Accumulator

Phase

Accumulator

clk

Multiply-Accumulator

Tj

Strength

parameter

ADSR

Table

Uj

Vj

b

c

a

Fig. 2. Diagram of Timbre Module

Concerning the first feature, we need to generate Tj , as
described in equation (2). To generate the main sinusoidal
wave, we may use paralleled conventional DDS concept as
shown in Figure 3.

Phase

Accumulator

Sin Wave

Table

clk

Phase

Accumulator

Sin Wave

Table

1th

16th

Frequency

Divider

Frequency

Divider

α1j

α16j

Tj

Fig. 3. Simple Fourier Synthesis by Sinusoidal DDS

In conventional DDS method, Frequency Divider is a digital
counter that divides system clock by a chosen factor into de-
sired frequency. Phase Accumulator is another digital counter
that generates addresses to activate the RAM table which used
to generate Sin Wave Table (SWT). The output Tj of the DDS
component is obtained as the sum of all partial outputs. It
is worth mentioning that the above structure becomes very
expensive as it used 16 SWT and 16 multipliers per Timbre
Module. This problem is a major one because the FPGA
resources are limited.

To solve this problem we proposed another time-division
multiplexing (TDM) structure to share one SWT for all the
16 parallel channels. As shown in Figure 2 (a), Frequency
Dividers and Phase Accumulators still work in parallel mode,
because they require high speed processing and their operating
clock rates are usually comparable to the Nios II processor
clock. SWTs of the conventional DDS on the contrary run
at comparatively lower speed. They are reduced into one
sequential access table in our TDM architecture. In order to
prevent access conflict among channels, a Table Router was
added to control the access priority. The added router can solve
half of the problem, because using the router we can’t obtain

the total sum of the sinusoidal waves as described in equation
(2). The total sum can be however obtained by using the
Multiply Accumulator (MAC), seeing in previous Figure 2 (a).
In our architecture, each Timbre Module will only consume
one SWT , one extra small size Amplitude Tuning Table (ATT)
and one MAC.

To provide the details of this parallel and sequential mixed
structure, we separate the TDM architecture into Process
Control Channel (PCC) and Data Processing Channel (DPC),
seeing in Figure 4.

Finite State Machine

Frequency Dividers &
Phase Accumulators

Sin Wave
Table

Depth: 64

MAC

Amplitude
Tuning
Table

Frequency Dividers &
Phase Accumulators

PCC

DPC

Tj

States/Flags

Buffer
1

Commands

Buffer
16

MUX

Fig. 4. SWT and MAC Shared Fourier Synthesis

PCC consists of a finite state machine, its function is
detecting and coordinating the workflow of DPC. It gathers
states information of the DPC, especially the Flags posted by
the parallel counting channels. This Flag is triggered to apply
for access of Sin Wave Table. When PCC recieve a Flag, PCC
send coordinating orders to MUX, SWT, ATT and MAC in the
piplined DPC to make a calculation cycle.

DPC is used to receive orders from PCC and process data
as fast as possible. It separates into a parallel region and
sequential region, they deal with high speed missions and
low speed missions respectively. 16 parameteried channels
run simultaneously and independently. This design gains more
speed in calculating the sum in equation (2). Whenever a
channel finishes counting with a result of table address, it will
require PCC to make a sequential calculation cycle. PCC is
the coordinator and core mechanism connecting parallel with
serial.

The PCC follows the mechanism that low frequency chan-
nels get higher priority to Sin Wave Table. In each calculation
cycle, MUX connect one channel to SWT, and correspond-
ing Phase Accumulator provide an address pointing to the
SWT memory unit, which is current normalized sinusoidal
amplitude. Because every harmonic channels share the same
sine wave that discreted into 64 points in length and 16
bits in amplitude. Therefore, ATT is essential to provide
different amplitude for different harmonics. This coefficient
from ATT is multipied with SWT result and storaged in the
corresponding buffer in MAC. Then PCC ask MAC to update
the sum to the following circuits. After the PCC clear the

responded Flag, it will be ready for the next cycle. This kind
of pipeline structure is also used to add Strength and ADSR
parameters.

.

III. EXPERIMENTAL RESULTS

Many experiments have been conducted in order to evalu-
ate operational properties and performances of the proposed
Fourier synthesizer (such as high-speed, high-precision, real-
time and flexibility). We also implemented a test board accord-
ing to Figure 1 and Tab I . FPGA design software Quartus II
9.0 [10] is used to make a logic synthesis.

TABLE I
SYNTHESIS PARAMETERS

Experimental parameters Quantity
Logic elements consumption 60%
total Memory consumption 27%

9 bits Multiplier 44
System clock 50 Mhz

Frequency error < 0.3%
Output bandwidth 20-20kHz

Step-by-step experiments were carried out to test frequency-
amplitude accuracy and the functionality of our ADSR. In the
test of frequency-amplitude accuracy,we compared the output
signal frequency spectrum with an off-line pre-prepared target
signal. The match between the two signals is accepted if they
share the same first five harmonics, as shown in Figure 5 that
indicates a good accuracy in both frequency and amplitude of
each harmonic.

A (in db)

500

-90

-60

-30

-120

f (in Hz)800 1000 1400 1700 2000

0

Fig. 5. Frequency accuracy analysis

To confirm the functionality of every component, we played
several music compositions on our synthesizer. The output
signal in time-domain and its frequency domain are shown in
Figure 6. In Figure 6(a), the time-domain data show an obvious
shape of ADSR envelop and strength vary which prove the
functionality of the proposed Timbre Module. Meanwhile, its
time-frequency representation, Figure 6(b), shows the overlap
of 2 timbres (A, B). The experimental studies show that the

proposed synthesizer can perform all tasks in real-time manner.

1.0 1.5 2.0 2.5

X(t)

10

0

10

20

20

(a) Time-domain representation, x(t) in % of maximum audio output level

1.0 1.5 2.0 2.5

f (in kHz)
16

12

4

8

t (in s)

(b) Time-frequency domain

Fig. 6. Time domain signal and its frequency spectrum

IV. CONCLUSIONS

In this paper a systematic design of Fourier Synthesizer
is proposed and implemented on a single FPGA chip. The
proposed circuit, especially the parallel design of Timbre
Modules, shows efficient flexibility and large calculation capa-
bilities in achieving real-time, high-speed and high-precision
applications, as the implementation of digital acoustic syn-
thesizer in FPGA field. We should highlight the fact that the
small-size and low-cost FPGA boards are efficient to perform
small-producion applications where tasks are complex and
time performance is critical.

REFERENCES

[1] I. Kuon and J. Rose,”Measuring the Gap between FPGAs and ASICs,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 26, NO. 2, Feb. 2007, pp. 203 - 215.

[2] K. Compton and S. Hauck, Reconfigurable computing: A survery of
system and software, ACM Computing Surveys, vol. 34, no. 2, pp.
171210, Jun. 2002.

[3] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal
Processing, 2nd ed, California Technical Publishing, San Diego, CA,
1999.

[4] V. Kroupa, Direct Digital Frequency Synthesizers, IEEE Press, Piscat-
away, NJ, 1999.

[5] J. Chowing, The synthesis of complex audio spectra by means of
frequency modulation, J. Aud. Eng. Soc., pp. 526529, Sept.1973.

[6] J. Vankka, Digital Synthesizers and Transmitters for Software Ra-
dio.Dordrecht, Springer, 2005.

[7] L. Qiwen, L. Qiwu. Principle of Keyboard Maintenance. Electronic
Industry Press, China, 1991.

[8] Altera Inc. Nios II Software Developer’s Handbook, Document Version:
11.0, May 2011.

[9] I2S bus specification, Phillips Semiconductors, 1996.
[10] Altera Inc. Quartus II Handbook, Document Version: 12.1.0, Nov 2012.

