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ABSTRACT

In this paper, we propose a new iterative algorithm to
solve the blind deconvolution problem of MIMO-FIR
channels driven by source signals which are temporally
second-order uncorrelated but fourth-order correlated
and spatially second- and fourth-order uncorrelated.
In our new approach, to solve the blind deconvolution
problem, we consider two stages: First, filtered source
signals are extracted from the mixtures of source sig-
nals. Second, the source signals are recovered from the
filtered source signals.

1. INTRODUCTION

The blind deconvolution problem consists of extracting
source signals from their convolutive mixtures observed
by sensors without knowledge about the source signals
and about the transfer functions (transmission chan-
nels) between the sources and the sensors.

The blind deconvolution problem has been studied
by many researchers (e.g., [1, 2, 3, 5, 6]). Almost all
of the proposed methods to date have been developed
under the assumption that the source signals are tem-
porally independent and identically distributed (i.i.d.)
and spatially independent (e.g., [1, 2, 6]). However, in
some applications, the i.i.d. assumption for the source
signals becomes very strong (e.g., applications in digi-
tal communications [4]). To solve the blind deconvolu-
tion problem for such applications, therefore, one must
assume that the source signals have a weaker condi-
tion than the i.i.d. condition, for example, the source
signals are temporally second-order uncorrelated but
higher-order correlated [3, 5].

Here we propose a new iterative algorithm to achieve
the blind deconvolution of MIMO-FIR channel systems
driven by source signals which are temporally high-
order colored signals (but temporally second-order white
and spatially second- and fourth-order uncorrelated sig-
nals). To do that, we consider a deflation approach.
Algorithms based on deflation approaches have been

used to achieve blind deconvolution under the assump-
tion that the source signals are i.i.d. and spatially in-
dependent [2, 6]. However, it is not clear whether the
deflation approach can be applied to the MIMO-FIR
channels in the case that the sources are fourth-order
colored signals. It has been shown by Simon et al. [5]
that the deflation approach can be applied to MIMO-
IIR channels in the case that source signals are colored
signals (but white signals in the sense of second-order
statistics). Their proposed method cannot solve blind
deconvolution problem but solve a blind signal gener-
ation problem in which filtered source signals are ex-
tracted from the mixtures of the sources.

Our new deflation algorithm is a modification of
the super-exponential deflation algorithm proposed by
Inouye and Tanebe [2] to the case of the blind decon-
volution problem of an MIMO-FIR channel driven by
the fourth-order colored signals. In our approach, we
should consider two stages to recover one source sig-
nal from the output of an multiple-input single-output
finite impulse response (MISO-FIR) system: First, a
cascaded integrator-comb (CIC) filter is acquired. It
implies that one filtered source signal is generated from
the mixtures of the source signals. Secondly, by making
the filtered signal be white in the sense of second-order
statistics, the source signal can be recovered from the
CIC filtered source signal.

2. PROBLEM FORMULATION

We consider the following MIMO-FIR system:

x(t) =
K∑

k=0

H(k)s(t− k), (1)

where x(t) represents anm-column output vector called
the observed signal, s(t) represents an n-column input
vector called the source signal, {H(k)} is an m×n ma-
trix sequence representing the impulse response of the
transmission channel, and the number K denotes its
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order. Equation (1) can be written as

x(t) = H(z)s(t), (2)

where H(z) is the z-transform of the transfer function,
i.e.

H(z) =
K∑

k=0

H(k)zk.

In the above, we note that we use variable z instead of
variable z−1 in the z-transform.

Here, let us consider the following FIR system called
a filter which is driven by the observed signals.

y(t) =
L∑

k=0

W (k)x(t− k), (3)

where y(t) is an q-column vector representing the out-
put signal of the filter, {W (k)} is an q × m matrix
sequence, and the number L is the order of the filter.
Equation (3) can be written as

y(t) = W (z)x(t), (4)

where W (z) is the transfer function of the filter defined
by

W (z) =
L∑

k=0

W (k)zk.

Substituting (2) into (4), we have

y(t) = G(z)s(t), (5)

where

G(z) := W (z)H(z) =
K+L∑
k=0

G(k)zk. (6)

In this paper, we consider the two types of filters: q =
n and q = 1. When q = n, we can formulate the blind
deconvolution as follows: Find a filter W (z), called an
equalizer, satisfying the following the condition, with-
out the knowledge of H(z),

W (z)H(z) = P DΛ(z), (7)

where P is an n×n permutation matrix, D is an n×n
regular diagonal matrix, and Λ(z) is an n × n regu-
lar diagonal matrix with diagonal entries being monic
monomials. We consider the type q = 1 when we want
to extract one filtered source signal from the mixtures
of the source signals.

In order to solve the blind deconvolution problem,
as the first stage, we consider the blind signal gener-
ation problem mentioned below, in which CIC filtered
source signals are generated from the observed signals.

The composite system (5) can be written in scalar form
as

yi(t) =
n∑

j=1

K+L∑
k=0

gij
(k)sj(t− k), (8)

where

gij
(k) =

m∑
li=1

L∑
τ=0

wil1
(τ)hl1j

(k−τ), (9)

Here i = 1, · · · , q,, j = 1, · · · , n, and k = 0, 1, · · · ,K +
L. The set of equations (8) can be written in vector
notation as

yi(t) = g̃T
i s̃(t), (10)

where the superscript T denotes the transpose of a vec-
tor, and s̃(t) is the column vector defined by

s̃(t) := [s̃1(t)T , s̃2(t)T , · · · , s̃n(t)T ]T , (11)
s̃i(t) := [si(t), si(t− 1), · · · , si(t−K − L)]T , (12)

and g̃i is the column vector consisting of the ith output
impulse response of the cascade system defined by

g̃i := [g̃T
i1, g̃

T
i2, · · · , g̃T

in]
T , (13)

g̃ij := [gij
(0), gij

(1), · · · , gij
(K+L)]T . (14)

Using (13), (9) can be written in vector notation as

g̃i = H̃w̃i, i = 1, 2, · · · , q, (15)

where w̃i is an (L + 1)m-column vector consisting of
the coefficients (corresponding to the ith output) of the
filter defined by

w̃i := [w̃T
i1, w̃

T
i2, · · · , w̃T

im]T , (16)
w̃ij := [wij

(0), wij
(1), · · · , wij

(L)]T , (17)

and H̃ is an n × m block matrix defined by

H̃ :=




H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

...
...

Hn1 Hn2 · · · Hnm


 (18)

whose (i, j)th block element Hij is a (K+L+1)×(L+1)
matrix with the (i1, j1)th element [H ij ]i1j1 defined by

[H ij ]i1j1 := hji(i1 − j1),
i1 = 0, · · · ,K + L; j1 = 0, · · · , L. (19)

Now we consider the generation of filtered source sig-
nals from the observed signal x(t). If g̃i’s become g̃i0 ’s
such that there exist w̃i0 ’s satisfying

[g̃10
, · · · , g̃q0

] = H̃ [w̃10 , · · · , w̃q0 ] = [δ̃1, · · · , δ̃q]P , (20)

then a filtered version of each component of s(t) can
be recovered from the observed signals xi(t)’s. Here δ̃i

is the n-block column vector defined by

δ̃i = [0, · · · ,0, gT
ii(ith vector), 0, · · · ,0]T , (21)
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where gii = [g1
ii, g

2
ii, · · · , gK+L+1

ii ]T is a non-zero (K +
L+1)-column vector and 0 is a (K+L+1)-row zero vec-
tor. We note the each gii can be chosen to be any non-
zero vector in order to generate filtered source signals.
However, in order to devise a new super-exponential
deflation algorithm, we should choose each gii to be a
non-zero vector whose elements all gj

ii (j = 1, · · · ,K +
L + 1) take a non-zero identical value gii �= 0. This
constitutes a novel key point in the following develop-
ment of this paper. Hence, the ith component of y(t)
is expressed as

yi(t) = δ̃
T

pi
s̃(t), i = 1, 2, · · · , q,

= gpi(z)spi(t), i = 1, 2, · · · , q, (22)

where {p1, · · · , pn} is a permutation of {1, · · · , n} and
gpi(z) = gpipi(1 + z + · · · + zK+L) which is a CIC fil-
ter. Therefore, we call gpi(z)spi(t) (or δ̃T

pi
s̃pi(t)) a CIC

filtered source signal. Without knowing the block
matrix H̃ along with the source signals si(t), one can
solve the blind signal generation problem by finding a
matrix W̃ 0 := [w̃10 , · · · , w̃q0 ] satisfying (20).

To find a matrix W̃ 0, we need the following as-
sumptions:

(A1) The transfer function H(z) in (2) is irreducible,
that is, rank H(z) = n for any z ∈ C (this implies that
the unknown system has less inputs than outputs, that
is, n ≤ m).

(A2) The input sequence {s(t)} is a zero-mean sta-
tionary vector process whose component processes {si(t)}
(i = 1, · · · , n) are temporally second-order white and
spatially second- and fourth-order uncorrelated. At
most, one component of {s(t)} can be Gaussian, and all
the others should be non-Gaussian with unit variance
and nonzero different Ki, where Ki is the sum of all
the fourth-order auto-cumulants of the ith component
signal:

Ki =
∑

τ1,τ2,τ3∈Z

Csi(τ1, τ2, τ3) �= 0 (< ∞), (23)

Ki �= Kj, i, j = 1, · · · , n; i �= j. (24)

Here Z denotes the set of all integers and Cν(τ1,τ2,τ3) is
the fourth-order auto-cumulant function of signal ν(t)
defined by

Cν(τ1, τ2, τ3) ≡ Cum{ν(t), ν(t− τ1)∗, ν(t− τ2), ν(t− τ3)∗},
where the superscript ∗ denotes the complex conjugate.
The sum of the fourth-order auto-cumulants, Ki is as-
sumed to be unknown for i = 1, · · · , n.

Under the assumption (A1), we can show that there
exists a matrix W̃ 0 satisfying (20), because H(z) has
a causal left inverse.

At the first stage, our first objective is to generate
CIC filtered source signals from the observed signals.
In order to achieve the blind deconvolution, as the sec-
ond stage, we consider of recovering the original source

signals from the CIC filtered source signals. In the sub-
section 3.2, we will show how to recover a source signal
from the filtered one δ̃T

pi
s̃pi(t).

3. A TWO-STAGE ALGORITHM

3.1. The first stage: A modified super-exponential
deflation algorithm

To generate the CIC filtered source signals, we consider
the following two-step algorithm adjusting the elements
gij

(k) for the cascade system,

gij
(k)[1] = Γj(

K+L∑
l=0

gij
(l))2(

K+L∑
l=0

gij
(l)∗), (25)

gij
(k)[2] = gij

(k)[1] 1√∑n
j=1

∑
l |gij

(l)[1]|2
, (26)

where Γj =
∑

τ1,τ2,τ3∈Z

Cum{sj(t), sj(t− τ1), sj(t− τ2)∗, sj(t− τ3)∗}

for j = 1, · · · , n.
We should note in (25) that the elements gij

(k)’s (where
k = 0, · · · ,K+L) take an identical value for fixed i and
j. Moreover, we should note in (26) that the absolute
value of the identical value is 1/

√
K + L+ 1.

Using the similar way as in [2], one can easily prove
that the following iterative algorithm with respect to
w̃i can be derived from (25) and (26):

w̃i
[1] = R̃

†
D̃i, i = 1, 2, · · · , q, (27)

w̃i
[2] =

w̃i
[1]

√
w̃i

[1]∗T R̃w̃i
[1]
, i = 1, 2, · · · , q, (28)

where † denotes the pseudo-inverse operation of a ma-
trix, R̃ is the m × m block matrix defined by

R̃ :=




R̃11 R̃12 · · · R̃1m

R̃21 R̃22 · · · R̃2m

...
...

...
...

R̃m1 R̃m2 · · · R̃mm


 (29)

whose (i, j)th block element R̃ij is the (L+1) × (L+1)
matrix with the (i1, j1)th element [R̃ij ]i1j1 defined by

[R̃ij ]i1j1 = Cum{xj(t− j1), xi(t− i1)∗}, (30)

and D̃i is the n-block vector defined by

D̃i := [dT
i1,d

T
i2, · · · ,dT

im]T (31)

where dijth is an (L+ 1)-column vector with the j1th
element [dij ]j1 given by
∑

τ1,τ2,τ3∈Z

Cum{yi(t), yi(t− τ2), yi(t− τ1)∗, xj(t− j1 − τ3)∗}.
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Theorem 1 Infinite iterations of two steps (25)
and (26) can yield an SISO cascade system gi(z) =∑n

j=1

∑K+L
k=0 gij

(k)zk such that its impulse response
vector defined by (13) and (14) satisfies

g̃ij = gjj for some j = j0,
g̃ij = 0 for all j �= j0,

(32)

where j0 =maxj |Γj ||
∑K+L

k=0 gij
(k)(0)| and j ∈ {1, · · · , n}.

From Theorem 1, it can be proved that the algorithms
(25) and (26) (as well (27) and (28)) can be used to
acquire a CIC filtered source signal δ̃T

j0
s̃j0(t).

3.2. The second stage

Here, we show how to obtain a source signal sj0(t−ki).
Our approach is based on the fact that the source signal
sj0(t) is white but the obtained output yi(t) based on
Theorem 1 is a colored signals. Therefore, the approach
is to whiten the output yi(t) in the sense of second-
order statistics. To implement the whitening of yi(t),
we consider applying the following AR model to the
CIC filtered output yi(t):

yi(t) = −
M∑

k=1

vi
(k)yi(t− k) + βui(t). (33)

where M is the order of an AR model and β is a con-
stant. The whitening of yi(t) can be achieved by con-
structing the AR model (33) with a sufficiently large
order M . The parameters β and vi

(k) can be found
using the Yule-Walker equations and the Levinson al-
gorithm.

3.3. The deconvolution algorithm

Our proposed algorithm can be summarized in the fol-
lowing steps:

Step 1. Set i = 1 (where i denotes the order of an
input extracted).
Step 2. Choose random initial values wij

(k)(0) of
wij

(k). Set l = 0 (l is the number of iterations).
Step 3. Calculate w̃i(l) using (27) and (28).
Step 4. If |w̃i

∗T (l)R̃ w̃i(l− 1)| is not close enough to
1, set l = l + 1 and go back to Step 3. Otherwise go
to the next step.
Step 5. Find the AR output using equation (33).
Step 6. At this stage, we assume that the source sig-
nal spi(t) has been recovered. Then we should compute
the scale and the time-shift of the input spi(t) by using
(22) and (33)
Step 7. Estimate the scale and the time-shift of hjpi

(τ)

by using ĥjpi
(τ) = E[xj(t)ui(t− τ)∗], j = 1, 2, · · · ,m.

Step 8. Estimate the contribution of spi(t) to the ob-
served signals xj(t) (j = 1, 2, · · · ,m), using x̂jpi (t) =

∑
τ ĥjpi (τ)ui(t− τ).

Step 9. Remove the above contribution using xj
(i)(t) =

xj(t) − x̂jpi(t), where xj
(i)(t) (j = 1, · · · ,m) are the

outputs of a linear unknown multichannel system with
m outputs and n− 1 inputs.
Step 10. If the superscript (i) of xj

(i)(t) is less than n,
then set i = i + 1 and xj(t) = xj

(i)(t) (j = 1, · · · ,m),
and the procedures mentioned above are continued un-
til i = n.

4. DISCUSSIONS

In this paper we proposed an iterative algorithm for the
blind deconvolution problem in the case of temporally
second-order white and spatially second- and fourth-
order uncorrelated signals. The proposed algorithm is
a modification of the the super-exponential deflation
algorithm proposed by Inouye and Tanebe [11] to the
case of the blind deconvolution problem of MIMO-FIR
channels driven by fourth-order colored source signals.
The proposed super-exponential algorithm was used to
generate CIC filtered source signals from the mixtures
of source signals. To recover the original source sig-
nals from the CIC filtered source signals, a whitening
technique has been used.

We have carried out computer simulations to demon-
strate the proposed method. The results have shown
that the proposed algorithm can be used successfully
to achieve the blind deconvolution.
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