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ABSTRACT
This paper deals with radar detection and identification
problems. Nowadays, To improve radar detection capabil-
ity, engineers use high resolution methods (i.e. ESPRIT or
MUSIC etc). Recently, some methods based on High Or-
der Statistics (HOS) have been used for the same purpose.
Here, a comparaison among different methods is proposed.
In addition, the application of ICA algorithms in this field
is discussed.

KEY WORDS: BSS, ICA, MUSIC, ARMA, ESPRIT, High Res-
olution Methods, Crosstalk, SNR, Real World Applications.

1. Introduction

The first patent and practical radar (RAdio Detection And
Ranging system) is credited to the German, Hulsmeyer,
in 1904. His ’telemobiloscope’ was designed as an
anti-collision device for ships. Since that time, radar has
been used in many applications such as navigation control,
military surveillance and intelligence, and so on.

The first radar detection techniques were based
on the spectrum and Fourier-based-methods. Later on,
high-resolution methods have been proposed such as
ARMA modeling, Prony methods, MUSIC (Multiple
Signal Classification) or ESPRIT (Estimation of Signal
Parameters via Rotational Invariance Technique).

Actually, blind identification, equalization and
separation are the most up-to-date methods in signal
processing. Since the beginning of 80th, such methods
have been used in many interesting applications and in
different fields [1, 2] (as: robotics, telecommunication,
radar, sonar, mobil phone, free hand phone, control of
nuclear reactor as well as the surveillance and the control
of airport traffic airlines, etc).

In radar context, few approaches based on these
methods can be founded in the literature [3, 4]. As for
exemple, in [5], the authors describe the case of complex
linear mixture of complex signals. In [6], the estimation
of some parameters are based on the extension of the
minimum norm principal eigenvectors method. Fourth
order cumulants are used to estimate harmonic frequency
of the received signal [7]. The extension of MUSIC to

high order statistics was described by Cardoso in [8]. To
estimate the Direction Of Arrival (DOA), one can use the
contracted Quadricovariance as in [9, 10].

In our project, we would like to apply some blind
identification and separation methods along with high res-
olution and classical methods to improve performances
for radar detection of moving targets. To reach our goal,
we should mention that radar detection and identification
mean: an estimation of the DOA, frequency spectres, am-
plitudes, echo delays and Doppler frequencies among oth-
ers. In the following, some of these features are estimated.

2. Signal model

Let us consider an antenna composed of m sensors,
equidistant of d, and n (n � m) narrow-band sources
around f0 (wave frequency). Let a(�i) be the antenna re-
sponse for a narrow-band source at a direction (DOA) � i:

a(�i) = [1; ej�i ; � � � ; ej(m�1)�i ]T : (1)

Here �i = 2�d
�

sin �i and � is the wave length. The re-
ceived signal y(t) at an instant t is given by:

y(t) = As(t) + n(t) =

nX
i=1

a(�i)si(t) + n(t); (2)

where n(t) stands for the m � 1 vector of Addi-
tive zero-mean White Gaussian Noise (AWGN) and
s(t) = [s1(t); :::; sn(t)]

T is the source vector which its
ith component is stationary complex zero-mean random
variable. Finally, A = [a(�1); � � � ; a(�n)] stands for the
m� n mixing matrix.

In the following, we assume that the signals emitted
by different sources are statistically independent from each
other and they are independent from the AWGN n(t).

3. Statistical approaches

For narrow band signals, most of the proposed methods
are based on second order statistics. At first, we empha-
sis some criteria based on fourth order statistics to analysis
mono-dimensional signal. Later on, some array process-
ing methods based on second and higher order statistics are
discussed.
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3.1 Frequency estimation using fourth-ordre
cumulant

Usually, spectral analysis of the signals are done using
Fourier transform, parametric approaches (i.e. ARMA,
AR, etc ) or second order statistics and subspace based
approaches (as MUSIC, ESPIRT or Prony method). In
this subsection, we emphasis some algorithms based
on fourth-order statistics criteria to estimate the signal
frequencies.

In radar applications, observed or received signals
can be considered as the sum of n finite sinusoids. Let
x(t) = (a1e

j2�f1t+j�1 ; � � � ; ane
j2�fnt+j�n)T denotes the

vector of harmonics and h = (1; � � � ; 1)T . In this case, the
received signal y(t) is given by:

y(t) = hT x(t) + n(t) =
nX
i=1

ai e
j2�fit+j�i + n(t)

= hT U x(t� 1) + n(t); (3)

where U = diag(ej2�f1 ; ej2�f2 ; � � � ; ej2�fn) and ai; fi

are respectively the amplitude and the frequency of the ith
complex sinusoids.

In [7], an harmonic retrieval estimation method based
on cumulant C13 was proposed:

C13;y(h) = cum(y(n); y�(n); y(n); y�(n+ h))

= E fy(n)y�(n)y(n)y�(n+ h)g

�2 E fy(n)y�(n)gE fy(n)y�(n+ h)g

�E
�
y(n)2

	
E fy�(n)y�(n+ h))g :

Here E stands for the expectation and y
� is the complex

conjugate of y. In our previous works [11, 12], we found
that criteria based on cum22 can achieve better performance
results than the ones based on cum13 or cum31, especially
in the blind separation context. Therefore, a criterion based
on cum22 and the approach in [7] has been investigated.
The cum22 is given by:

C22;y(h) = cum(y(n); y�(n+ h); y(n); y�(n+ h))

= E fy(n)y�(n+ h)y(n)y�(n+ h)g

�2 E fy(n)y�(n+ h)gE fy(n)y�(n+ h)g

�E
�
y(n)2

	
E
�
y
�(n+ h)2)

	
:

Let C22(m) be the L� L following matrix:

C22 =

2
6664

C22(0) C22(1) � � � C22(L� 1)
C22(�1) C22(0) � � � C22(L� 2)

...
...

. . .
...

C22(�L+ 1) C22(�L+ 2) � � � C22(0)

3
7775 :

The harmonics of the signal can be estimated by a sin-
gular value decomposition (SVD) of the previous matrix.

In fact, the SVD of C22 gives two orthogonal matrices U
and V such that:

C22 = U S VT
;

where S is a diagonal matrix. Different signal harmonics
can be estimated, by a simple projection of the signal into
the noise subspace, as the minima of the function:

Q(w) = h(w)H V2 V
H
2 h(w); (4)

where vH is the conjugate transpose of v,
h(w) = [1; ejw; � � � ; ej(L�1)w]T and V2 is a part of
V that characterizes the noise sub-space. Finally, we
should mention that the actual version of the method with
cum22 gives similar performance results as the original
version proposed in [7].

3.2 Second-order array processing

The main idea consists on the use of covariance matrix of
the received signals. When the number of the sources is
strictly less than the number of sensors (i.e. n < m), one
can use the subspace noise to establish a projector operator
�2 as in MUSIC method. It is well known that the DOA of
the sources can be estimated by using the following local-
ization function:

f(�) = a(�)H �2 �
H
2 a(�) (5)

We should mention that similar approaches are proposed in
the literature as ESPIRT (where the signal subspace is con-
sidered) and Prony (where we estimate the harmonic fre-
quencies of the sources which are assumed to be periodical
stationary signals).

3.3 Fourth-order array processing

Recently, some methods based on high order statistics have
been proposed. In fact, the Quadricovariance tensor can be
considered as the natural extension of the covariance matrix
which allows us to extend signal sub-space.

3.3.1 Quadricovariance

Hereinafter, we are considering tensorial notations. Let us
denote the 4th and 2nd order moment by:

�
j
i = Efyiy

jg

�
j k
i l = Efyiy

j
y
k
ylg:

When the sources are circular complex signals, the 4th-
order cumulants or the Quadricovariance tensor can be sim-
plified:

Q
j k
i l = Cum(yiy

j
y
k
yl) = �

j k
i l � �

k
i �

j
l � �

j
i�

k
l : (6)
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Thanks to the multi-linear and the additive properties of the
cumulants, we obtain :

Q
j k
i l = a

�
i a

j
�a

k

a

Æ
kK

� 

� Æ ; (7)

where K = (K� 

� Æ ) is the source signal Quadricovariance,

and the noise is assumed to be an AWGN, i.e. his Quadi-
covariance tensor is zero.

It is clear that the Quadricovariance is a 4-
dimensional tensor. On the other side, most of the numer-
ical algorithms are optimized for matrix computations. In
order to use such numerical algorithms and to simplify the
complexity of the mathematical operations, some authors
suggest to use a contracted version of the Quadricovariance
as in [13]:

c
j
i = Efyi y

j
y
k
ylg �Efyiy

jgEfyly
kg �Efyiy

kgEfyly
jg:

In normal matrix notations, the previous expression can be
written as:

C = Rc � RR� R Tr(R); (8)

with Rc = EfyHy yyHg, R = EfyygH and Tr(A) is
the trace of the matrix A.

3.3.2 MUSIC-4th order

The standard MUSIC algorithm can be generalized to deal
with fourth order statistics, see [8]. In addition, it was
proved that the DOA of the signals can be determined by
the application of MUSIC method with 4-order statistics,
see [14]. The MUSIC-4th ordre algorithm is similar to
MUSIC-2nd ordre where the Quadricovariance tensor is
used instead of the covariance matrix.

The eigenvalues decomposition (EVD) of a m � m

covariance matrix gives m eigenvalues and m orthonormal
eigenvectors. By similar way [14], the Quadricovariance
can be considered as an operator in m2 dimensional space,
which its EVD is written with m2 real eigenvalues and m2

eigen-matrices:

Q =

m2X
i=1

�iMi �M
H
i ; (9)

where � represents the tensorial product. The signal sub-
space is orthogonal to the noise subspace. Therefore, one
can obtain the DOA by similar relationship as in (5) where
the projector operator �2 should be replaced with fourth
order projector�4 :

�4 =
X
i

MiM
H
i ; 8i 2 f1;m2g j �i = 0: (10)

The main advantage of MUSIC-4th consists on the possi-
bility to identify up to 2(m � 1) different DOA instead of
n < m for previous MUSIC-2 algorithm. Further details
about this projector can be found in [8].

3.3.3 Contracted Quadricovariance

To minimize computational efforts, the authors of [10] pro-
pose a projector operator based on a contracted Quadrico-
variance C. Let us assume that the matrix C can be decom-
posed as following:

C = A Z AH
; (11)

where Z is a (n� n) hermitian matrix. Let us denote:

C =

�
C1

C2

�
; (12)

whereC1 (resp. C2) is a n�m (resp. (m�n)�mmatrix).
Now, the propagatorP is defined in [10] as a (m� n)� n

matrix given by:

PH = C2 C
H
1 (C1 C

H
1 )�1: (13)

Let Q denotes a (m � n) � m matrix defined by
QH = [PH � I], where I stands for a (m�n)� (m�n)
identity matrix. In this case, one can prove that QHA = 0

and the direction of arrival can be obtained by the mini-
mization of the following localization function:

F (�) = a(�)H QQH a(�): (14)

Finally, to evaluate their projector, they choose the con-
tracted Quadricovariance C of equation (11) proposed in
[9] and estimated as:

C =
1

N

NX
t=1

y(t)y(t)Hy(t)y(t)H�R2�R Tr(R); (15)

where Tr stands for the matrix trace and N is the number
of the samples. Performance analysis can be found in [9].

4. Estimation of DOA by blind separation

In this section, we assume that the received signal is given
by Equation (2). The blind separation of sources prob-
lem (BSS) involves retrieving unknown statistically inde-
pendent sources from their observed mixed signals.

4.1 Blind separation problem

Generally, blind separation of sources can be achieved up
to a factor scale and up to a permutation, i.e. the estimated
or separation matrixB is given by:

B = AP�; (16)

where� = diag(z1; :::; zn) is a full rank diagonal matrix
and P = fe1; e2; � � � ; eng is a permutation matrix, where
ei are n orthonormal vectors. It is clear that the mixing
matrix A of equation (2) can be written as:

A =

2
666664

1 � � � 1
x1 � � � xn

x
2
1 � � � x

2
n

...
...

...
x
m�1
1 � � � x

m�1
n

3
777775
; (17)
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where xi = e
j2�(d=�) sin �i and i 2 f1; � � � ; ng. In this

case, the estimated matrix B has the following form, up to
a column permutation:

B =

2
666664

z1 � � � zn

z1 x1 � � � zn xn

z1 x
2
1 � � � zn x

2
n

...
...

...
z1 x

m�1
1 � � � zn x

m�1
n

3
777775
: (18)

It is clear that MatrixB can have similar structure to Matrix
A by dividing each column bi of B by its first component
b1i. Finally, the DOA can be obtained as follows:

xi = e
j2�(d=�) sin �i = e

j�i

�i = arcsin

�
�

2�d
�i

�
;

where i 2 f1; � � � ; ng.

4.2 DOA estimated by JADE algorithm

To estimated DOA by using blind separation algorithms,
one can find a wide selection of different algorithms. To
clarify our ideas as well to conduct some simulated experi-
ment, we select JADE (Joint Approximate Diagonalization
of Eigen-matrices) algorithm proposed by Cardoso et al.
[3]. One can briefly describe JADE algorithm by the fol-
lowing four steps:

1. Using the observation covariance matrix Ry of y(t),
one can estimate a whitening matrixW.

2. Let z(t) = Wy(t), then the 4th cumulant Qz can
be estimated and the n most significant eigen pairs
f�r;Mr; 1 � r � sg can be selected.

3. One should jointly diagonalize the eigen set of Qz by
an unitary matrixU: The joint Diagonalization can be
obtained by minimizing the function JOFF :

min
U

JOFF = min
U

sX
k=1

Off(UMk U
H);

whereU is an unitary matrix. We should mention here
that the function Off [15] of a matrix is defined by
Off(M) =

P
i6=j jmij j

2

4. The estimate ofA is Â = Ŵ# Û. (# pseudo inverse)

Finally, we should mention that some experiments
have been conducted using different algorithms as the ones
cited in [16, 17]. The latter algorithms need less compu-
tational effort and convergence time than JADE but they
gives less attractive performing results. In the following,
we only present the results obtained by JADE.

5. Experimental results

In our simulations, the second and the fourth order statis-
tics are evaluated according to the estimators proposed in
[18]. Many experiments have been carried out to study the
performance results of the different algorithms studied in
this paper. Some of our experimental results are illustrated
in this section.

At first, 50 Monte Carlo simulations have been car-
ried out to show the performance results of the frequency
estimator based on fourth order cumulants and discussed
in subsection (3.1). In these simulations, 64 samples of
a signal with three harmonics (f1 = 0:2; f2 = 0:21 and
f3 = 0:4) are considered. Fig. 1 shows the estimation
results of Music-2 (classic method) and the fourth order
statistic estimator (in Fig. 1 (b)).
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a- Classical MUSIC-2 b- 4th order cumulant estimator

Figure 1. Frequency estimation with AWGN and a
SNR = 3dB

In these simulations, we found that MUSIC-2 needs
less time and computational effort to converge, but the
fourth order estimator can achieve better estimation of the
frequency.

Concerning the fourth order MUSIC, it seems that
MUSIC-4 is much more complicate to implement than
MUSIC-2. In addition, MUSIC-2 needs less computation
effort than MUSIC-4. On the other hand, MUSIC-4
can achieve better result than MUSIC-2 especially for
a relatively small number of samples and a noisy data,
see Fig. 2 (a). In that fig, we used 5 sensors and three
sources with 300 samples, we find that MUSIC-4 is able to
estimate the DOA of the three sources.

We should mention also that when the number of
sources is equal to the number of sensors, MUSIC-2 is not
able to estimate any angle (as the noise subspace becomes
empty). Fig 2 (b) shows the estimation of three DOA with
help of three sensors by using MUSIC-4. In this case, no
results can be obtained by MUSIC-2.
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Figure 2. DOA estimation by MUSIC-4 and MUSIC-2
with AWGN and a SNR = 0dB

In similar conditions as mentioned before, we found
that the fourth order propagator (i.e. the contracted
Quadricovariance estimator, see subsection 3.3.3) has
similar performance results as MUSIC-4 and better perfor-
mance results than MUSIC-2 algorithm. Fig. 3 shows the
estimation of three DOA with help of 5 sensors by using
fourth order propagator and Music-2.
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Figure 3. DOA estimation by the Contracted Quadricovari-
ance and MUSIC-2 with AWGN and a SNR = 0dB

Concerning the BSS algorithms, some experiments
have been conducted. From section 4, it is clear that BSS
algorithms can estimate blindly (with out any specific
model as in Prony or MUSIC-2) the features of the sources
(frequency, DOA, etc ). Fig 4 shows the estimation of the
frequency obtained by Jade.

Up to now, we have just compared second and fourth
order technics for the estimation of DOA. To conclude our
experimental study, simulations were carried out to com-
pare the performance of two fourth order technics: BSS
with JADE and the fourth order propagator based on the
contracted Quadricovariance. To reach our goal, a linear
�=2 equispaced array of m = 5 sensors are considered.
Fig. 5 shows the deviation of the direction over r = 150
Monte carlo runs, the sample size is N = 512. For a SNR
of 5dB, comparable performance results are obtained for
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Figure 4. DOA estimation by Jade with AWGN and a
SNR = -2dB

the two methods, see Fig. 5 (a) and (b). However, when
the SNR decreases to -2dB, we observe better results with
Jade than with the propagator method, see Fig. 5 (c) and
(d). The latter method is limited in resolution (as shown
in (d)). In fact, the estimation of direction can not be well
determined if the differences among the DOA angles are
less than 10Æ instead of 5Æ for Jade.

6. Conclusion

In this paper, we present and discuss some fourth order
statistic approaches to estimate features from radar signals.
The theoretical study can be considered as a survey for the
up-to-date fourth order methods applied into radar fields.
Our experimental study shows that the classical method
are powerful estimation methods. In addition, these meth-
ods are much easier to be implemented than the methods
based on fourth order statistics. However, the latter ones
can achieve better results in various situations (with small
number of samples, with a number of sources equal or great
than the number of sensors, with an AGWN and a weak
SNR, etc). Finally, the obtained simulated results are not
enough to conclude definitively our study. However, they
encourage us to continue our study and to test such meth-
ods on real world applications.
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