
BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS

DRIVEN BY FOURTH-ORDER COLORED SIGNALS

M. Kawamoto1,2, Y. Inouye1, A. Mansour2, and R.-W. Liu3

1. Department of Electronic and Control Systems Engineering, Shimane University,
1060 Nishikawatsu, Matsue, Shimane 690-8504, JAPAN

E-mail:kawa@ecs.shimane-u.ac.jp
2. Bio-mimetic Control Research Center, RIKEN (JAPAN)

3. Department of Electrical Engineering, University of Notre Dame (USA),

ABSTRACT

In this paper, we propose a new iterative algorithm to
solve the blind deconvolution problem of MIMO-FIR
channels driven by source signals which are temporally
second-order uncorrelated but fourth-order correlated
and spatially second- and fourth-order uncorrelated.
To achieve our goal, we extend the super-exponential
deflation algorithm proposed by Inouye and Tanebe
[2] to the case of the blind deconvolution problem of
MIMO-FIR channels driven by the source signals which
possess fourth-order auto-correlations. In our new ap-
proach, to recover one source signal, there are two
stages: First, by using our proposed super-exponential
algorithm, a cascaded integrator-comb (CIC) filter is
acquired. It implies that one filtered source signal is
separated from the mixtures of the source signals. Next,
by making the filtered source signal uncorrelated, one
source signal is recovered from the filtered source sig-
nal. To show the validity of the proposed algorithm,
some simulation results are presented.

1. INTRODUCTION

The blind deconvolution problem consists of extracting
source signals from their convolutive mixtures observed
by sensors without knowledge about the source signals
and about the transfer function (transmission channel)
between the sources and the sensors. The blind de-
convolution has drawn an attention in diverse fields,
for example, digital communications, speech process-
ing, image processing, and array signal processing, etc.

The blind deconvolution problem has been studied
by many researchers [1, 2, 3, 5, 6]. Almost all of the pro-
posed methods to date have been developed under the
assumption that the source signals are temporally in-
dependent and identically distributed (i.i.d.) and spa-
tially independent [1, 2, 5]. However, in some applica-

tions, the i.i.d. assumption for the source signals be-
comes very strong. As an example, in digital commu-
nications, the information bearing sequences are coded
in order to reduce noise corruption and channel dis-
tortion. These codes implicitly are not mutually inde-
pendent among sequences and hence it is unlikely that
they are i.i.d. signals. On the other hand, these code
sequences are interleaved to avoid burst errors when the
codes are transmitted [4]. These interleaved sequences
are usually considered to be uncorrelated. To solve the
blind deconvolution problem for such an application,
therefore, one can assume that the source signals have
a weaker condition than the i.i.d. condition, for ex-
ample, the source signals are temporally second-order
uncorrelated but higher-order correlated.

Here we propose an iterative algorithm to achieve
the blind deconvolution of MIMO-FIR channel systems
driven by source signals which are temporally high-
order colored signals (but temporally second-order white
and spatially second- and fourth-order uncorrelated sig-
nals). This condition for the source signals is weaker
than the i.i.d. condition. To do that, we consider a
deflation approach. Algorithms based on deflation ap-
proaches have been used to achieve blind deconvolution
under the assumption that the source signals are i.i.d.
and spatially independent [2, 5]. However, it is not
clear whether the deflation approach can be applied to
the MIMO-FIR channels in the case that the sources
are fourth-order colored signals. Our new algorithm
is an extension of the super-exponential deflation algo-
rithm proposed by Inouye and Tanebe [2] to the case
of the blind deconvolution problem of an MIMO-FIR
channel driven by the fourth-order colored signals. In
our approach, we should consider two stages to recover
one source signal from the output of a multiple-input
single-output finite impulse response (MISO-FIR) sys-
tem: First, a linear phase filter with identical tap co-
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efficients which is called a cascaded integrator-comb
(CIC) filter is acquired. It implies that one filtered
source signal is separated from the mixtures of the
source signals (i.e. the MISO-FIR channel driven by
the source signals is reduced to an SISO-FIR channel
driven by one of the source signals). Secondly, by mak-
ing the output signal of the SISO-FIR channel white
in the sense of second-order statistics, the source signal
can be recovered from the filtered source signal. Simu-
lation examples are presented to illustrate the perfor-
mance of the proposed algorithm.

2. PROBLEM FORMULATION

Let us consider the following MIMO-FIR system:

x(t) =

K∑

k=0

H(k)s(t − k), (1)

where x(t) represents an m-column output vector called
the observed signal, s(t) represents an n-column input
vector called the source signal, {H(k)} is an m×n ma-
trix sequence representing the impulse response of the
transmission channel, and the number K denotes its
order. Equation (1) can be written as

x(t) = H(z)s(t), (2)

where H(z) is the z-transform of the transfer function,
i.e.

H(z) =

K∑

k=0

H(k)zk.

To solve the blind deconvolution problem, let us
consider the following FIR system called the equalizer.

y(t) =
L∑

k=0

W (k)x(t − k), (3)

where y(t) is an n-column vector representing the out-
put signal of the equalizer, {W (k)} is an n×m matrix
sequence, and the number L is the order of the equal-
izer. Equation (3) can be written as

y(t) = W (z)x(t), (4)

where W (z) is the equalizer transfer function defined
by

W (z) =

L∑

k=0

W (k)zk.

Substituting (2) into (4), we have

y(t) = W (z)H(z)s(t) = G(z)s(t), (5)

s(t) x(t) y(t)

H(z) W(z)

G(z)

Unknown
system

Equalizer

Figure 1: The cascade system of an unknown system
and an equalizer.

where

G(z) = W (z)H(z) =

K+L∑

k=0

G(k)zk. (6)

Figure 1 shows the cascade system of an unknown
system followed by an equalizer. All variables can be
complex-valued (this is required for such an applica-
tion using quadrature amplitude modulation (QAM)
signals [4]). In order to solve the blind deconvolution
problem, as the first stage, we consider the blind gener-
ation problem mentioned below, in which CIC filtered
source signals are generated from the observed signals.

The cascade system can be written in scalar form
as

yi(t) =

n∑

j=1

K+L∑

k=0

gij
(k)sj(t − k), i = 1, 2, · · · , n, (7)

where

gij
(k) =

m∑

l=1

L∑

τ=0

wil
(τ)hlj

(k−τ), k = 0, 1, · · · , K + L,

(8)
Here i = 1, · · · , n, and j = 1, · · · , n. The set of equa-
tions (7) can be written in vector notation as

yi(t) = g̃T
i s̃(t), (9)

where the superscript T denotes the transpose of a vec-
tor, and s̃(t) is the column vector defined by

s̃(t) := [s̃1(t)
T , s̃2(t)

T , · · · , s̃n(t)T ]T , (10)

s̃i(t) := [si(t), si(t − 1), · · · , si(t − K − L)]T ,(11)

and g̃i is the column vector consisting of the ith output
impulse response of the cascade system defined by

g̃i := [g̃T
i1, g̃

T
i2, · · · , g̃

T
in]T , (12)

g̃ij := [gij
(0), gij

(1), · · · , gij
(K+L)]T . (13)

Using (12), (8) can be written in vector notation as

g̃i = H̃w̃i, i = 1, 2, · · · , n, (14)
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where w̃i is an (L + 1)m column vector consisting of
the coefficients (corresponding to the ith output) of the
equalizer defined by

w̃i := [w̃T
i1, w̃

T
i2, · · · , w̃

T
im]T , (15)

w̃ij := [wij
(0), wij

(1), · · · , wij
(L)]T , (16)

and H̃ is an n × m block matrix defined by

H̃ :=








H11 H12 · · · H1m

H21 H22 · · · H2m

...
...

...
...

Hn1 Hn2 · · · Hnm








(17)

whose (i, j)th block element Hij is a (K+L+1)×(L+1)
matrix with the (l, r)th element [Hij ]lr defined by

[Hij ]lr := hji(l − r), l = 0, · · · , K + L; r = 0, · · · , L. (18)

If g̃i’s become such g̃i0 ’s that there exist w̃i0 ’s satisfy-
ing

[g̃10
, · · · , g̃n0

] = H̃ [w̃10
, · · · , w̃n0

] = [δ̃1, · · · , δ̃n]P , (19)

then a filtered version of each component of s(t) can
be recovered from the observed signals xi(t)’s. Here P

is an n × n permutation matrix and δ̃i is the n-block
column vector defined by

δ̃i = [0, · · · ,0, gT
ii(ith vector),0, · · · ,0]T , (20)

where gii is a (K + L)-column vector whose elements
take nonzero values. Hence, the ith component of y(t)
is expressed as

yi(t) = δ̃
T

pi
s̃pi

(t), i = 1, 2, · · · , n,

= gi0(z)spi
(t) i = 1, 2, · · · , n, (21)

where {p1, · · · , pn} is an arbitrary permutation of {1, · · · ,
n} and gi0(z) = gi0pi

(1 + z + · · · + zK+L) which is a

CIC filter. Therefore, we call gi0(z)spi
(t) (or δ̃T

pi
s̃pi

(t))
a CIC filtered source signal. Without knowing the
block matrix H̃ along with the source signals si(t),
one can solve the blind generation problem by finding
a matrix W̃ 0 := [w̃10

, · · · , w̃n0
] satisfying (19).

To find a matrix W̃ 0, we need the following as-
sumptions:

(A1) The transfer function H(z) in (2) is irreducible,
that is, rank H(z) = n for any z ∈ C (this implies that
the unknown system has less inputs than outputs, that
is, n ≤ m).

(A2) The input sequence {s(t)} is a zero-mean sta-
tionary vector process whose component processes {si(t)}
(i = 1, · · · , n) are temporally second-order white and
spatially second- and fourth-order uncorrelated. At

most, one component of {s(t)} can be Gaussian, and all
the others should be non-Gaussian with unit variance
and nonzero different Ki, where Ki is the sum of all
the fourth-order auto-cumulants of the ith component
signal:

Ki =
∑

τ1,τ2,τ3∈Z

Csi(τ1, τ2, τ3) 6= 0 (< ∞), (22)

Ki 6= Kj , i, j = 1, · · · , n; i 6= j. (23)

Here Z denotes the set of all integers and Cν(τ1,τ2,τ3) is
the fourth-order auto-cumulant function of signal ν(t)
defined by

Cν(τ1, τ2, τ3) ≡

Cum{ν(t), ν(t − τ1)
∗, ν(t − τ2), ν(t − τ3)

∗},

where the superscript ∗ denotes the complex conjugate.
The sum of the fourth-order auto-cumulants, Ki is as-
sumed to be unknown for i = 1, · · · , n.

At the first stage, our first objective is to generate
CIC filtered source signals from the observed signals.
In order to achieve the blind deconvolution, as the sec-
ond stage, we consider of recovering the original source
signals from the CIC filtered source signals. In the sub-
section 3.2, we will show how to recover a source signal
from δ̃T

pi
s̃pi

(t).

3. THE NEW ALGORITHM

3.1. First stage of the Proposed Super-Exponen-
tial Algorithm

To generate the CIC filtered source signals, we consider
the following two-step algorithm based on the Inouye-
Tanebe algorithm [2] of adjusting the elements gij

(k)

for the cascade system,

gij
(k)[1] = Γj(

K+L∑

l=0

gij
(l))p(

K+L∑

l=0

gij
(l)∗)q,

k = 0, · · · , K + L, (24)

gij
(k)[2] = gij

(k)[1] 1
√

∑n

j=1

∑

l |gi,j
(l)[1]|2

,

k = 0, · · · , K + L, (25)

where where (·)[1], (·)[2] stand for the result of the first
step and the result of the second step per iteration, p
and q are nonnegative integers such that p + q ≥ 2,

Γj =

∑

τp1
, · · · , τpp

︸ ︷︷ ︸

p

,τq1
, · · · , τqq+1

︸ ︷︷ ︸

q+1

∈Z

Cum{sj(t), sj(t − τp1
), · · · ,
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sj(t − τpp
), sj(t − τq1

)∗, · · · , sj(t − τqq+1
)∗}

for j = 1, · · · , n. (26)

We should note from (24) that the elements gij
(k)’s

(where k = 0, · · · , K + L) take an identical value for
fixed i and j.

Using the similar way as in [2], it can be easily
proved that the following iterative algorithm with re-
spect to w̃i can be derived from (24) and (25):

w̃i
[1] = R̃

†
D̃i, i = 1, 2, · · · , n, (27)

w̃i
[2] =

w̃i
[1]

√

w̃i
[1]∗T R̃w̃i

[1]
, i = 1, 2, · · · , n, (28)

where † denotes the pseudo-inverse operation of a ma-
trix, R̃ is the m × n block matrix defined by

R̃ :=








R̃11 R̃12 · · · R̃1n

R̃21 R̃22 · · · R̃2n

...
...

...
...

R̃m1 R̃m2 · · · R̃mn








(29)

whose (i, j)th block element R̃ij is the (L+1) × (L+1)

matrix with the (l, r)th element [R̃ij ]lr defined by

[R̃ij ]lr = Cum{xj(t − r), xi(t − l)∗}, (30)

and D̃i is the n-block vector defined by

D̃i := [dT
i1, d

T
i2, ..., d

T
in]T (31)

where dijth is an (L + 1)-column vector with the rth
element [dij ]r given by

[dij ]r =
∑

τ1,τ2,τ3∈Z

Cum{yi(t), yi(t − τ2), yi(t − τ1)
∗,

xj(t − r − τ3)
∗}. (32)

As for (32), under assumption (A2), we confine our-
selves to the case of p = 2 and q = 1. (27) and (28) are
the main iterative steps in our algorithm.

Theorem 1 Infinite iterations of two steps (24)
and (25) can yield an SISO cascade system gi(z) =
∑n

j=1

∑K+L

k=0 gij
(k)zk such that its impulse response

vector defined by (12) and (13) satisfies

g̃ij = gjj for some j = j0,
g̃ij = 0 for all j 6= j0,

(33)

where j0 = maxj |Γj ||
∑K+L

k=0 gij
(k)(0)| and j ∈ {1, · · · , n}.

From Theorem 1, it can be proved that the algorithms
(24) and (25) (or (27) and (28)) can be used to acquire
a CIC filtered source signal δ̃T

j0
s̃j0(t).

3.2. Second stage

In this subsection, we show how to obtain a source
signal sj0(t − ki). There are two cases:
Case 1: If the order K in (1) is known,

ui(t) = (1/gi(z))yi(t) (34)

is calculated. Because gi(z) = gij0(1 + z + · · ·+ zK+L)
can be obtained by (27) and (28), where gij0 is a com-
plex constant.

Case 2: If the order K is unknown, we use the follow-
ing theorem.
Theorem 2(Liu-Dong Theorem[6]) Let y(t) be

the output of an SISO-FIR system; y(t) =
∑M

k=0 g(k)s(t−
k). Assume that s(t) is white in the sense of second-
order statistics; E[s(t)s(t)∗] = 1 and E[s(t)s(t− τ)∗] =
0 (τ 6= 0). The filter g(z) becomes dzl, if and only if the
output y(t) is second-order uncorrelated signal, that is,
E[y(t)y(t)∗] = 1 and E[y(t)y(t − τ)∗] = 0 (τ 6= 0).

To implement the whitening of yi(t), we consider
applying the following AR model to the CIC filtered
output yi(t):

yi(t) = −

M∑

k=1

vi
(k)yi(t − k) + βui(t). (35)

where M is the order of the AR model and β is a con-
stant. The whitening of yi(t) can be achieved by con-
structing the AR model (35) with a sufficiently large
order M . From equation (35), we have

ui(t) = V (z)yi(t), (36)

where

V (z) = β−1(1 +
M∑

k=1

vi
(k)zk). (37)

The parameters β and vi
(k) can be found using Yule-

Walker equations and the Levinson algorithm.

3.3. The deconvolution algorithm

Our proposed algorithm can be summarized in the fol-
lowing steps:

Step 1. Set i = 1 (where i denotes the order of an
input extracted).

Step 2. Take random initial values wij
(k)(0) of wij

(k),

and then calulate w̃i(0)/

√

w̃i(0)∗T
R̃w̃i(0), where w̃i(0)

is the initial value of w̃i. Set l = 0 (where l denotes
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the number of iterations).

Step 3. Calculate w̃i(l) using (27) and (28). The ex-
pectionation can be estimated using a large sample of
yi(t) and xj(t) (in our experimental studies, we used
about 10,000 points)

Step 4. If |w̃i
∗T (l)R̃ w̃i(l − 1)| is not close enough to

1, set l = l + 1 and go back to Step 3. Otherwise go
to the next step.

Step 5. Calculate (34) or find the AR output using
equation (36).

Step 6. At this stage, we assume that the source sig-
nal spi

(t) has been recovered. Then we should compute
the scale and the time-shift of the input spi

(t) by using
the following equations:

yi(t) =

m∑

j=1

∑

k

wij
(k)xj(t − k),

ui(t) =
1

gi(z)
yi(t), or

ui(t) = β−1(yi(t) +

M∑

k=1

vi
(k)yi(t − k)),

where wij
(k), gi(z), and v(k) are obtained by the above

five steps.

Step 7. Estimate the scale and the time-shift of hqpi
(τ)

by using the cross-correlation of the observed signals
xq(t) and ui(t) as

ĥqpi
(τ) = E[xq(t)ui(t − τ)∗], q = 1, 2, · · · , m. (38)

Step 8. Estimate the contribution of spi
(t) to the ob-

served signals xq(t) (q = 1, 2, · · · , m), that is,
∑

τ hqpi
(τ)

spi
(t − τ), using

x̂qpi
(t) =

∑

τ

ĥqpi
(τ)ui(t − τ), (39)

Step 9. Remove the above contribution using the fol-
lowing equation:

xq
(i)(t) = xq(t) − x̂qpi

(t), (40)

where xq
(i)(t) (q = 1, · · · , m) are the outputs of a lin-

ear unknown multichannel system with m outputs and
n − 1 inputs.

Step 10. If the superscript (i) of xq
(i)(t) is less than n,

then set i = i + 1 and xq(t) = xq
(i)(t) (q = 1, · · · , m),

and the procedures mentioned above are continued un-
til i = n.

Note that the procedure of Step 6 to Step 10 are
implemented to make it possible to extract the other
source signals from the observed signals and the ex-
tracted source signals.

4. COMPUTER SIMULATIONS

To demonstrate the validity of our algorithm. Many
computer simulations were conducted. Some results
are shown in this section. We considered the following
two-input and three-output FIR system.

H(z) =





1.0 + 0.6z + 0.3z2 0.6 + 0.5z − 0.2z2

0.5 − 0.1z + 0.2z2 0.3 + 0.4z + 0.5z2

0.7 + 0.1z + 0.4z2 0.1 + 0.2z + 0.1z2



 .

The observed signals x(t) = [x1(t), x2(t), x3(t)]
T (t =

0, 1, 2, · · ·) were calculated by (2). The source signals
{si(t)} (i = 1, 2) were generated using the following
system:

[
s1(t)
s2(t)

]

=

[ 0.3+z
1+0.3z

0

0 0.1+z
1+0.1z

] [
ν1(t)
ν2(t)

]

. (41)

where {ν1(t)} and {ν2(t)} were non-Gaussian i.i.d. sig-
nals with zero mean and unit variance, but were inde-
pendent with each other. Since the filters (0.3+z)/(1+
0.3z) and (0.1+z)/(1+0.1z) in (41) were all-pass filters,
the source signals {s1(t)} and {s2(t)} became tempo-
rally second-order white but temporally fourth-order
colored signals. The values of τ1, τ2, and τ3 in (32) were
set to belong to the intervals [0,20], [0,20], and [0,20],
respectively. To extract two source signals from the
observed signals, we used two 3(L + 1)-column vectors
w̃1 and w̃2, where L was set to 2, and w̃1 and w̃2 were
used in the first deflation and second one, respectively.
The parameters wij

(k) (i = 1, 2; j = 1, 2, 3; k = 0, 1, 2)
were set to zero except for w11

(0) = 1 and w21
(1) = 1,

where the initial values of wij
(k)’s were given by calcu-

lating w̃i/
√

w̃i
∗T R̃w̃i. The number M in (35) was set

to 30. The expectations in (27) were estimated using
10000 data samples of y(t) and xj(t).

The following w̃1 was found after 8 Monte Carlo
runs by the procedure of Step 2.

w̃1 = [0.33, 0.56, 0.63,−0.47, 0.14, 0.60,

− 0.82,−1.85,−1.72]T (42)

( = [w11
(0), w11

(1), w11
(2), w12

(0), w12
(1), w12

(2),

w13
(0), w13

(1), w13
(2)]T )

From (42), we obtained the following g̃1;

g̃1 = [−0.48, −0.50, −0.46, −0.40, −0.38,
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− 0.03, 0.003,−0.03,−0.01, 0.001]

( = [g11
(0), g11

(1), g11
(2), g11

(3), g11
(4),

g12
(0), g12

(1), g12
(2), g12

(3), g12
(4)]),

from which, it could been seen that the output signal
y1(t) becames

y1(t) ≈ δ̃
T

1 s̃1(t), (43)

which means that the filtered source signal δ̃1
T s̃1(t)

could be acquired by using (27) and (28). After calcu-
lating the AR output using (36), we obtained u1(t) ≈
−s1(t).

To measure the accuracy of the result obtained by
Step 1 to Step 5, we calculated the intersymbol inter-
ference (ISI) defined by

ISI =

∑n

j=1

∑K+L+M

k=0 |g′ij
(k)

|2 − |g′i·
(·)
|2max

|g′i·
(·)|2max

, (44)

where g′ij
(k)

denote the parameters of the filter between

ui(t) and si(t), and |g′i·
(·)
|2max are defined by

|g′i·
(·)
|2max := max

j,k
|g′ij

(k)
|2.

In that experiment, we found that ISI = 0.0587. If

g′ij
(k)

= δ(k − ki) for k = 0, · · · , K + L + M , where
ki ∈ {0, ..., K + L + M} is a nonegative integer, ISI
becomes zero. The experimental results showed good
performances of our algorithms .

After the procedures of Step 6 to Step 10, we ap-
plied the procedure of Step 3 to y2(t) ( =

∑3
j=1

∑2
k=0

w2j
(k)xj(t − k)) and calculted (36). And, we obtained

u2(t) ≈ s2(t). In this case, ISI became 0.11.
From the results shown in the example, one can

see that source signals can be successfully extracted
from their convolutive mixtures using our proposed al-
gorithms.

5. CONCLUSIONS

In this paper we proposed an iterative algorithm for
the blind deconvolution problem in the case of tem-
porally second-order white and spatially second- and
fourth-order uncorrelated signals. Our algorithm is an
extension of the the super-exponential deflation algo-
rithm proposed by Inouye and Tanebe [2] to the case of
the blind deconvolution problem of MIMO-FIR chan-
nels driven by fourth-order colored source signals. Our
proposed super-exponential algorithm was used to gen-
erate CIC filtered source signals from the mixtures of
source signals. To recover the original source signals
from the filtered source signals, the Liu-Dong theorem
have been used.

We have carried out computer simulations to demon-
strate our proposed algorithms. The results have shown
that the proposed algorithms can be used successfully
to achieve the blind deconvolution.

Even if source signals possess high-order auto-correl-
ations, our proposed algorithm can be extended to such
a case by adjusting the degree of p and q in (26). It

can be seen from (24) that if |
∑K+L

k=0 gij
(k)(0)| for all

j are equal to zero, g
(k)
ij (1)’s become zero. This corre-

sponds to a pathological case. In this case, we consider
that by resetting the initial values of wij

(k)(0) to be ap-

propriate values, one of |
∑K+L

k=0 gij
(k)(0)| (j = 1, ..., n)

becomes at least nonzero. We expect that the defla-
tion algorithm dealt with in this paper may exhibit
global convergence, similar the result in [5]. Unfortu-
nately, we have not solved this problem yet. If we can
solve this problem, the solution obtained by the defla-
tion algorithm can be applied to the initial values of
the equalizer in the case of the non-deflation algorithm
(e.g., [3]). This is because, in the existing deflation
algorithm, the results of recovered source signals grad-
ually degrade as the number of the deflation increases,
and it is impossible to guarantee global convergence in
the case of the non-deflation algorithm [3].
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