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ABSTRACT

In this paper, a method of blind separation for con-

volved non-stationary signals (e.g., speech signals and

music) is presented. Our method achieves blind sep-

aration by forcing mixed signals to uncorrelate with

each other. The validity of the proposed method has

been con�rmed by a computer simulation and an ex-

periment in an anechoic room [7]. In this paper, we

apply our method to an experiment which extracts two

source signals from their mixtures observed in a nor-

mal room. The experiment is implemented in a noisy

environment. Moreover, we test our algorithm using

the data obtained from Computational Neurobiology

Lab.'s Blind Source Separation Web Page.

1. INTRODUCTION

We present a method of blind separation for a convo-

lutive mixture:

x(t) = A(z)s(t); (1)

where x(t) = [x1(t); :::; xN(t)]
T and s(t) = [s1(t); : : : ;

sN (t)]
T . A(z) is a matrix which has elements aij(z)

(i; j = 1; :::; N ):

aij(z) =

1X
k=�1

aij(k)z
�k (i; j = 1; :::; N ); (2)

where z�k is a delay operator, i.e., si(t)z
�k = si(t �

k). In this paper, the sources s(t) are assumed to

be nonstationary signals (e.g., speech signals, music),

and the source signals are separated from their mix-

tures x(t) (observed signals) by using the nonsta-

tionarity properties of the sources. Nonstationarity

of the sources implies that the auto-correlations of the

sources change with time t. Our method does not re-

quire any additional information about whether

the sources are super-Gaussianor sub-Gaussian.

We only make use of the second-order moments

of the observed signals. Methods using second-order

moments for separating the sources s(t) from the ob-

served signals x(t) have been proposed by Chan et al.

[?], Ehlers et al. [3], Gerven et al. [4,5], and Lind-

gren et al. [13]. An attractive feature of our method,

di�erently from those, is that only one set of cross-

correlation data is used and non-minimum phase sys-

tems can be treated.

Our method separates the sources from the observed

signals by modifying the parameters of an adaptive �l-

ter such that a cost function takes the minimum (zero)

at any time. The validity of the proposed method is

con�rmed by an experiment that extracts two source

signals from their mixtures observed in a normal room.

2. SOURCE SIGNALS

Source signals si(t) (i = 1; :::; N ) are assumed to be mu-

tually independent with zero mean. From this property

of source signals, the auto-correlation matrixR(t; � ) of

s(t) becomes a diagonal matrix:

R(t; � ) = E[s(t)s(t� � )T ]

= diag fE[s1(t)s1(t� � )]; :::; E[sN(t)sN (t � � )]g

� diag fr1(t; � ); :::; rN(t; � )g ; (3)

where diagf:::g represents a diagonal matrix with the

diagonal element f:::g, and E[x] is the ensemble average

of x.

Our aim is to extract source signals from the ob-

served signals xi(t) (i = 1; :::; N ). To this end, we

make the following assumptions.

Assumption 1 A(z) does not have poles or zeros on

the unit circle jzj = 1.
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Assumption 2 si(t) (i = 1; :::; N ) are nonstationary

signals whose auto-correlations ri(t; � ) (i = 1; :::; N ;8� )

change independently with time t.

3. SEPARATION PROCESS

An adaptive feedforward network (see Figure 1) is used

to separate source signals from the observed signals

xi(t) (i = 1; :::; N ). The network outputs can be writ-

ten as:

yi(t) = xi(t� L) +

NX
j=1
j 6=i

MX
k=0

bij(k)xj(t� k)

(i = 1; :::; N ; 0� L < M ) (4)

=

NX
j=1

�bij(z)xj(t); (5)

where �bij(z) =
PM

k=0 bij(k)z
�k (i; j = 1; :::; N ; i 6= j)

represent the transfer function between the j-th input

signal and the i-th output signal, and �bii(z) = z�L

(i = 1; :::; N ) represent delay time L between the i-th

input and the i-th output. Eqn (5) can be rewritten in

vector notation as

y(t) = B(z)x(t); (6)

where y(t)=[y1(t); :::; yN(t)]
T
, B(z) = [�bij(z)]=PM

k=0B(k)z�k, B(k) = [bij(k)].

Substituting eqn (1) into eqn (6), we have

y(t) = B(z)A(z)s(t) � C(z)s(t),

where C(z) � B(z)A(z). If B0(z)A(z) = D(z)P , the

outputs of the network become the �ltered and per-

muted source signals, i.e., s(t) = [�s1(t); :::;�sN(t)]
T
=

D(z)Ps(t). Here, P is an arbitrary permutation ma-

trix, and D(z) is a diagonal matrix expressed as

D(z) = diag

n 1X
k=�1

d1(k)z
�k; :::;

1X
k=�1

dN (k)z
�k
o
:

x1(t)

yi(t)xi(t)

xN(t)

z-L

y1(t)

yN(t)

b z
i1
( )

b z
iN

( )

Figure 1: Signal separation network

�si(t)(i = 1; :::; N ) can also be regarded as source sig-

nals, because �si(t)(i = 1; :::; N ) are mutually indepen-

dent signals. Therefore, our goal is now to �nd the

matrix B0(z) satisfying C(z) = D(z)P .

4. SEPARATION METHOD

In order to �nd the matrix B0(z) satisfying C(z) =

D(z)P , we use the following function:

Q(t;B(z)) =
1

2

n NX
i=1

logE[yi(t� L)
2
]

� logdetE[y(t� L)y(t � L)T ]
o
: (7)

Note that the parameter L of eqn (7) represents the

same delay as the one in eqn (4). In our method,

time t � L is regarded as t = 0. Therefore, our al-

gorithm has access to both future and past values of

the observed signals, that is, fx(t),..., x(t � L + 1)g

and fx(t � L � 1),...,x(t � M )g, respectively. Ow-

ing to this, our proposed algorithm can be applied

to non-minimum phase systems. The function given

by eqn (7) evaluates only one set of cross-correlations,

E[yi(t � L)yj(t � L)](i; j = 1; :::; N ; i 6= j), and data

outside that set, for example, E[yi(t)yj (t � � )](i; j =

1; :::; N ; i 6= j; 8� ) are not taken into account.

Matrix B0(z) (satisfying C(z) = D(z)P ) is found

by minimizing the function Q(t;B(z)). In order to min-

imize the cost function (7) the steepest descent method

is used:

�B(k)
:
= ��

@Q(t;B(z))

@B(k)
= ��

�
@Q(t;B(z))

@bij(k)

�

(k = 0; :::;M ); (8)

where � is a small positive constant. The symbol
:
= in

eqn (8) indicates that only the non-diagonal elements

on the left-hand side of eqn (8) are equivalent to those

on right-hand side.

Calculating the right-hand side of eqn (8), we have

�B(k)
:
= �z�k

n
I � (diagE[y(t � L)y(t� L)T ])

�1

� E[y(t � L)y(t� L)T ]
o
B(z)�T

(k = 0; :::;M ); (9)

where diagX represents a diagonal matrix with the di-

agonal elements of matrix X.

In practice, E[y(t� L)y(t� L)T ] is replaced by its

instantaneous value y(t � L)y(t � L)T . To estimate

diagE[y(t�L)y(t�L)T ], we use the following moving

average:

�i(t) = ��i(t� 1) + (1� �)yi(t� L)2

(i = 1; :::; N ; 0< � < 1): (10)
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Figure 2: The con�guration of two speakers and two

microphones

Then, eqn (9) becomes

�B(k)
:
= �z�k

n
I � �(t)

�1

� y(t� L)y(t� L)T
o
B(z)�T

(k = 0; :::;M ); (11)

where �(t) = diag
�
�1(t); :::; �N(t)

	
. Eqns (10) and

(11) are used to update B(k) (k = 0; :::;M ).

5. EXPERIMENTS: N=2

The validity of the proposed method has been con-

�rmed by computer simulation and an experiment in an

anechoic room [7]. In this experiment, we applied the

proposed method to extract source signals from their

mixtures observed in a normal room. We consider the

case in which the number of sources and observed sig-

nals is two, i.e., N = 2. In this case, eqn (11) becomes

�b12(k) = �

�y1(t� L)y2(t � k)

(1 � z2Lb12(z)b21(z))�1(t)

(12)

�b21(k) = �

�y2(t� L)y1(t � k)

(1 � z2Lb12(z)b21(z))�2(t)

(k = 0; :::;M ):

In this section, we use the simpli�ed algorithmobtained

by omitting the common term 1=(1� z2Lb12(z)b21(z))

of eqn (12):

�bij(k) = ��yi(t � L)yj (t� k)=�i(t)

(i; j = 1; 2; i 6= j): (13)

Several experiments have been performed to demon-

strate the validity of our method. This section de-

scribes three of them.

Example 1: The source signals s1(t) and s2(t)

were parts of a speech given from one male person.

And they were input at the same time to two speaker

devices. The observed signals x1(t) and x2(t) were

detected by two microphones (nondirectional micro-

phones). This experiment was implemented in a nor-

mal room with air conditioning and computer noises.

The con�guration of the two speakers and two micro-

phones is shown in Fig. 2. Parameters M and L of

eqn (4) were set to 800 and 100, respectively. The pa-

rameters of the learning algorithm were chosen as � =

0.00001 (see eqn (13)) and � = 0.9 (see eqn (10)). The

initial values of bij(k) (k = 0; :::; 799; i; j = 1; 2; i 6= j)

and �i(t) were set to 0 and 1, respectively.

Fig. 3 shows the plots of si(t), xi(t), and yi(t) (i

= 1, 2). It can be seen that the output signals y1(t)

and y2(t) are close to the original speech signals s1(t)

and s2(t), respectively. Therefore, one can see that our

method could separate the source signals from their

mixtures observed in a normal room.

Example 2: In this example, source signals s1(t)

and s2(t) were music and a male voice, respectively.

The con�guration of two speakers and two microphones

is the same as the case of example 1. We used the same

parameters (M , L, �, �) and the same initial values of

b12(k) and b21(k) as in example 1.

Fig. 4 shows the plots of si(t), xi(t), and yi(t) (i =

1, 2). It can be seen that the output signals y1(t) and

y2(t) are close to the original signals s1(t) and s2(t),

respectively.

Example 3: In this example, observed signals x1(t)

and x2(t) are the data which were obtained from Com-

putational Neurobiology Lab.'s Blind Source Separa-

tionWeb Page (http://www.cnl.salk.edu / tewon/Blind/

blind.html, Audio Examples page, 2. Speech-Speech

Separation). [On source signals and the con�guration

of two speakers and two microphones, see his home

page.] Parameters M and L of eqn (4) were set to 200

and 50, respectively. The parameters of the learning

algorithm were chosen as � = 0.00001, � = 0.9, and

the initial values of b12(k), b21(k) (k = 0; :::; 199), and

�i(t) were set to 0, 0, and 1, respectively.

Fig. 5 shows the plots of xi(t), our result yi(t),

and Te-Won's result hi(t) (i = 1, 2). We con�rmed

that our proposed algorithm can completely separate

original signals from their mixtures xi(t) (i = 1, 2).
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Figure 3: The plots of si(t),xi(t),yi(t) (i = 1; 2)

6. CONCULSION

We have presented a method of blind separation for

convolved nonstationary signals.

We have shown the results of an experiment of real

world blind separation for convolved nonstationary sig-

nals. The experiment was implemented in a normal

room. The room had air conditioning and computer

noises. It has been shown that our method can separate

two original signals from their mixtures observed in an

ordinary room. In example 3 of section 5, we used the

data which were obtained from Computational Neu-

robiology Lab.'s Blind Source Separation Web Page.

We have con�rmed in this example that our proposed

method can separate two speech signals from their mix-

tures observed in a normal o�ce.
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