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Abstract In various studies on blind separation

of sources, one assumes that sources have the same

sign of kurtosis. In fact, this assumption seems

very strong and in this paper we studied relation

between signal distribution and the sign of the kur-

tosis. A theoretical result has been found in a simple

case. However, for more complex distributions, the

kurtosis sign cannot be predicted and may change

with parameters. The results give theoretical ex-

planation to tricks, like non-permanent adaptation,

used in non stationary situations.

Keywords: kurtosis, high order statistics, blind

identi�cation and separation, probability density

function.

1 Introduction

In various works [8, 5, 4, 3, 9, 2] concern-

ing the problem of blind separation of sources,

authors propose algorithms whose e�cacy de-

mands conditions on the source kurtosis, and

sometimes that all the sources have the same

sign of kurtosis. In fact, this assumption seems

very strong and in this paper we studied rela-

tion between signal distribution and the sign

of its kurtosis.

2 De�nition and Properties

Let us denote by x(t) a zero-mean real sig-

nal and by p(x) its probability density func-

tion (pdf). By de�nition, the kurtosis K[p(x)]

is the normalized fourth-order cumulant of the

signal [1, 7]:

K[p(x)] =
Cum4(x)

E(x2)2

=
E(x4)� 3E(x2)2

E(x2)2
; (1)

where E() is the average. If the signal is not

a zero-mean signal, the equation (1) becomes

[7]:

K[p(x)] =
Cum4(x)

E(x2)2

=
E(x4)� 3E(x2)2

E(x2)2
+
12E(x)2E(x2)

E(x2)2

�
4E(x)E(x3) + 6E(x)4

E(x2)2
: (2)

Clearly, the kurtosis has the same sign than

the fourth-order cumulant, then we will only
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study the sign of the fourth-order cumulant.

Let us denote the kurtosis sign ks(x). Some

properties can be easily derived :

1. The kurtosis sign ks(x) is invariant by any

linear transformation. From (2), we de-

duce:

Cum4(ax+ b) = a
4
Cum4(x); (3)

then ks(ax+ b) = ks(x). So in the follow-

ing, we consider zero-mean signal with a

variance �2
x
= 1 (where �x is the standard

deviation of x(t)).

2. If we express the pdf p(x) as a sum of two

functions: p(x) = pe(x) + po(x), where

pe(x) is even and po(x) is odd, then:

� ks(x) only depends on the even func-

tion pe(x),

because the fourth-order cumulant

(1) depends only on the fourth and

second-order moments (so it depends

just on the even moments).

� The even function pe(x) has the

properties of a pdf:

pe(x) � 0; 8x

and

Z
IR
p(x)dx =

Z
IR
pe(x)dx = 1:

Therefore, in the following, the study may be

restricted to a zero-mean signal x(t) with a

variance �
2
x
= 1, whose pdf p(x) is even. As

examples, in the table 1, we computed ks(x)

for four well known distributions.

Table 1: known distributions.

Signal Cum4(x) ks(x) �g.

Uniform
a
4+b4+6a2b2+3:5(a3b+b3a)

�30
� 1.a

Discrete
�N(N+1)(2N2+2N+1)

15 � 1.b

Gamma 26
3 , if �x = 1 + 1.c

Cosine 192
�4
� 2� 2�4 � 1.d

-b -a a b

x

p(x)

0.5/(b-a)

p(x)

x
......

1 2 N-1-2-N

(a) (b)

x

p(x)

1-1

0.1 x

p(x)

α−1 α+1−1−α 1−α

π/8

(c) (d)

Figure 1: pdf signals

Clearly, ks(x) is strongly related to the

comparison between p(x) and the normalized

Gaussian distribution, whose kurtosis is equal

to zero. Therefore, let us consider a pdf p(x),

we say p(x) is an over-Gaussian pdf (respec-

tively sub-Gaussian), if:

9 x0 2 IR+ j 8x � x0; p(x) > g(x) (4)

(respectively p(x) < g(x)), where g(x) is the

normalized Gaussian pdf. From the previ-

ous examples, it seems that ks(x) is positive

for over-Gaussian signals and negative for sub-

Gaussian signals.

3 Theoretical result

Let us consider p(x) an (even) pdf and g(x) a

zero-mean normalized Gaussian pdf.

Theorem 1 Assuming that p(x) and g(x)

have only two intersections, ks(x) is positive

(respectively negative) if p(x) is over-Gaussian

(respectively sub-Gaussian).

The demonstration is given in appendix A.
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3.1 General cases

In the general case, if there are more then two

intersection points, then there is no rule to pre-

dict ks(x). More precisely, over-Gaussian as

well as sub-Gaussian signals can lead to pos-

itive as well as negative sign of kurtosis. As

an example, let us consider the signal x(t)

whose pdf is a sum of two exponential func-

tions (sotef):

p(x) =
b

4
(exp(�bjx�aj)+exp(�bjx+aj)) (5)

Figure 2 (a) shows the general form of p(x) for

x � 0. Figure 2 (b) and �gure 2 (c) give exam-

ples (parameterized by a and b) where ks(x) >

0 and ks(x) < 0, respectively. On these �g-

ures, we show also the normalized Gaussian

pdf g(x): the previous theorem is not appli-

cable, because there are at least 2 intersections

points (in IR+) between p(x) and g(x).

Using the equation (5), it is easy to prove

that:

E(x4) = a
4 +

12

b2
a
2 +

24

b4
(6)

E(x2) = a
2 +

2

b2
(7)

From equations (6) and (7), we can derive the

kurtosis of this signal:

k[p(x)] = 2
6� (ab)4

4 + 4a2b2 + a4b4
; (8)

Then by choosing adequate values of the pa-

rameters a and b, it is possible to change ks(x):

K[p(x)]� 0 if 0 < ab � 4
p
6: (9)

With respect to the de�nition (4), p(x) is an

even over-Gaussian pdf, and nevertheless ks(x)

is not always negative, but may change accord-

ing to the values of the parameters a and b.

3.2 Case of bounded pdf

In practical cases, we may consider that physi-

cal signals are bounded, and consequently their

pdf are sub-Gaussian. Let us consider for

a x

p(x)

b/4

-a
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(a,b)=(2,0.5), ks>0
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(a,b)=(5,1), ks<0

1 2 3 4 5 6
x

0.2

0.4
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1

(c)

Figure 2: The normalized exponential pdf

(sotef) and normalized Gaussian pdf g(x).

instance quaternary sources x(t) (see Fig 3),

whose the fourth order cumulant is

Cum4(x) = a
4
p(1� 3p)� 6a2b2p(1� p)

�b4(1� p)(2� 3p): (10)

It is clear that the sign of Cum4(x) may change

with the values of the parameters. For example

let be a = 0, then Cum4(x) < 0 if p < 2=3, and

vice versa.

x

(1-p)/2
p/2

a b-a-b

p/2
(1-p)/2

p(x)
1

Figure 3: Pdf of quaternary sources.
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Figure 4: Two exemples of x-limited pdf

Finally, let us consider the exemples in �gure

4. It is easy to evaluate the kurtosis of these

signals (Fig 4). The kurtosis of �rst signal (Fig

4 (a)) can be written as:

K(p2(x)) =
�

5�4
x

(b5 � a
5) +

�

�4
x

c
5 �

�
2

3�4
x

(b3 � a
3)2

�
3�2

�4
x

c
6 � 2

��

�4
x

(b3 � a
3)c3; (11)

with the condition:

�(b� a) + � = 1: (12)

The kurtosis of second signal (�gure 4 (b)) is

equal to:

K(p3(x)) =
�

5�4
x

(b5 � a
5) +

�

5�4
x

(d5 � c
5)

�
�
2

3�4
x

(b3 � a
3)2 �

�
2

3�4
x

(d3 � c
3)2

�2
��

3�4
x

(b3 � a
3)(d3 � c

3); (13)

with the condition:

�(b� a) + �(d� c) = 1: (14)

For scale reasons, we do not draw directly

K(p(x)) but:

K
?(p(x)) =

1

2
[K(p(x))+ j K(p(x)) j]: (15)

Thus, if K(p(x)) > 0, K
?(p(x)) = K(p(x)),

otherwise, if K(p(x)) < 0, K
?(p(x)) = 0.

Then, we remark that the sign of the kurtosis

may be easily controlled with adequate values

of the pdf parameters (see Fig 5).
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(a) K?(p2(x)), where a = 2 and b = 9.
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Figure 5: Representation of K?(p(x)) accord-

ing to parameters c and �

4 Experimental results

In the case of real signals, the kurtosis estima-

tion will be done on �nite slipping windows [6].

For stationary signals, the window may be very

long. But for non-stationnary signals (speech

signals for exemple, see Fig 6), the length of

the window must be short enough.
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Figure 6: Speech signal: Camp3



44 FUSION'98 International Conference

Moreover, in case of non stationary signals,

the pdf can vary a lot : for instance, silent

periods in speech signals imply a peak around

x = 0 for the pdf (see �gure 7).

pdf of Camp3

-0.75 -0.25 0.25 0.75 1
sig

100

200

300

400

500

Figure 7: Estimated pdf of speech signal

"CAMP3"

According to the size of the window, and

its location, we observe changes in the kurtosis

sign. Figure 8 shows the kurtosis time evolu-

tion of the speech signal of �gure 6. The kurto-

sis is estimated on 500-sample windows, every

50 samples. We remark that the kurtosis is

negative during a silent period, and it becomes

positive during the speech transient.
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Figure 8: The estimated kurtosis of speech sig-

nal "Camp3"

Finally, by an experimental study we remark

that: In the case of speech signal, the kurtosis

sign 
uctuations can be eliminated by estimate

the kurtosis on the signal without the silent pe-

riods (see Fig 9).

This result can explain that the non-permanent

learning (freezing the parameter estimation)

in speech separation algorithms [9] enforces

source pdf to have a negative kurtosis sign and

then allows algorithm convergence.

Camp3 without silent period

7000

-0.75

-0.25
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(a) Speech signal "Camp3" without its silent periods.
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(b) Estimated pdf of this signal.

Figure 9: Experimental results

5 Conclusion

In the paper, we point out some relations be-

tween pdf and kurtosis sign. First, we show

the kurtosis sign is not modi�ed by any scale

or translation factors, and it only depends on

the even part of the pdf.

Basically, people refer to comparison with

Gaussian pdf. We prove the comparison is only

relevant for unimodal pdf p(x) having only two

intersections (in IR) with the Gaussian pdf.

In the general case, even for bounded pdf,

we show by a few examples that the kurtosis

sign can be controlled by the pdf parameters.

From a practical point of view, kurtosis sign

of non stationary signals, which must be esti-

mated on short slipping windows, can change.

It gives a theoretical explanation to the neces-

sity and the e�cacy of intermittent adaptation

which is used for separation of non stationary

sources [9].
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A Proof of Theorem 1

Let us consider that for x > 0; there is one and

only one intersection point � between p(x) and

g(x).

It is known that the fourth-order cumulant

of a Gaussian signal is zero. As a consequence,

we can write:Z
IR
x
4
g(x)dx = 3

Z
IR
x
2
g(x)dx = 3: (16)

Using (1) and the unit variance signal, the kur-

tosis can be rewritten as:

K[p(x)] =

Z
IR
x
4(p(x)� g(x))dx: (17)

According to result of section 2, we may only

consider the even pdf. In addition, we just may

study the sign of �:

� =
1

2
K[p(x)]

=

Z
1

0
x
4(p(x)� g(x))dx

=

Z
�

0
x
4(p(x)� g(x))dx

+

Z
1

�

x
4(p(x)� g(x))dx: (18)

Let us consider that the pdf p(x) is an over-

Gaussian signal ( p(x) > g(x), when x ! 1).

Then, the sign of p(x)� g(x) remains constant

on each interval [0,�], and [�, 1]. Using the

second mean value theorem, � can be rewritten

as:

� = �
4

Z
�

0
(p(x)� g(x))dx

+�4
Z
1

�

(p(x)� g(x))dx

= �
4

Z
1

�

(p(x)� g(x))dx

��4
Z

�

0
(g(x)� p(x))dx (19)

where:

0 < � < � < �: (20)

In fact, p(x) and g(x) are both pdf, so we have:

Z
1

0
(p(x)� g(x))dx =

Z
�

0
(p(x)� g(x))dx+

Z
1

�

(p(x)� g(x))dx

= 0: (21)

From (21), and taking into account that p(x)

is over-Gaussian, we deduce:

Z
1

�

(p(x)� g(x))dx=

Z
�

0
(g(x)� p(x))dx > 0:

(22)

Using (19), (20) and (22), we remark that:

� = (�4 � �
4)

Z
1

�

(p(x)� g(x))dx > 0: (23)

Finally, if p(x) is an over-Gaussian pdf (with

the assumption of an unique intersection pos-

itive point between p(x) and g(x)), then its

kurtosis is positive. Using the same reasoning,

we can claim that a sub-Gaussian pdf has a

negative kurtosis.
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