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Abstract
In this contribution, we present a new approach for the

estimation of the parameters of exponentially damped si-
nusoids based on the second order statistics of the obser-
vations. The method may be seen as an extension of the
minimum norm principal eigenvectors method (see [1]) to
cyclo-correlation statistics domain. The proposed method
exploits the nullity property of the cyclo-correlation of sta-
tionary processes at non-zero cyclo-frequencies [2]. This
property allows in a pre-processing step to get rid from sta-
tionary additive noise. This approach presents many ad-
vantages in comparison with existing higher order statistics
based approaches [3]: (i) First it deals only with second
order statistics which require generally few samples in con-
trast to higher-ordermethods, (ii) it deals either with Gaus-
sian and non-Gaussian additive noise, and (iii) also deals
either with white or temporally colored (with unknown au-
tocorrelation sequence) additive noise. The e�ectiveness of
the proposed method is illustrated by some numerical sim-
ulations.

1. Introduction

Parameter estimation of exponentially damped sinusoids
from a �nite subset of noisy observations is a very com-
mon problem in signal processing. Such a problem arises in
many practical �elds and has already received considerable
attention in the signal processing literature [1, 3, 4, 5, 6].
For additive white Gaussian noise, the damped sinusoids
parameters can be estimated using the iterative quadratic
maximum likelihood method (IQML) [6]. Prony's method
[1] and matrix pencil (MP) [5] method can be applied when
the additive noise contribution can be neglected. Higher
order statistics based methods can be used in the case
of Gaussian additive noise [3, 7]. Others estimation ap-
proaches use an autoregressive modeling of the additive
colored noise [8, 9]. Our method can be applied for any

stationary1 additive noise process. The method is based

1Even this assumption can be relaxed at the price of more

e�ort and notation.

on the use of the cyclo-correlation function of the observed
signal and will be referred as CCEM (Cyclo-Correlation
based Estimation Method). The main motivation behind
the use of cyclo-correlation statistics in this problem lies in
their ability to suppress noise under stationarity hypothe-
sis.

2. The second order statistics based

method

Let (y(n))n2ZZ be a scalar observed signal modeled for any
instant n � 0 as L exponentially damped complex sinusoids
corrupted by additive noise:

y(n) =

LX
m=1

hme
bmn +w(n); n = 0; 1; � � � (1)

where the complex constants are de�ned as

hm = ame
j�m

; bm = ��m + jfm; with �m > 0 (2)

and w(n) denotes the additive noise which is assumed here
to be a stationary random process. Note that the am and
�m are respectively the amplitude and the initial phase
of the m-th signal; its damping and frequency factors are
respectively �m and fm. The problem addressed here deals
with estimation of the frequencies ffmg, damping factors
f�mg, and when desired, complex amplitudes fhmg from
a �nite amount of observed data y(n); n = 0; ::;N � 1.
In the sequel, we �rst give the explicit expression of the
observed signal cyclo-correlation and then we show how
one can estimate both of the damping and the frequency
factors using a linear prediction approach.

2.1. Cyclo-correlations of exponential signals

Consider the noiseless signal in (1). Let � 6= 0 be the

considered cyclo-frequency and let r�(k) denotes the k-th
cyclo-correlation factor at the cyclo-frequency �.

r
�(k)

def
=

1X
n=0

y(n + k)y(n)�ej�n (3)
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where

A
�
(m) =

LX
l=1

hmh
�

l

1� e
bm+b�

l

+j�
(5)

>From (4), the theoretical cyclo-correlation of exponen-
tial signals may be seen as yet another exponential signal
with the same pole location but with di�erent amplitudes
and initial phases.
In practice, we have only a �nite data length (N obser-

vations). In this case, the cyclo-correlation coe�cients are
estimated by

r̂
� (k) =

n1X
n=n0

y(n+ k)y(n)�ej�n

where n0 = max(0;�k) and n1 = min(N � 1;N � 1� k).
The main advantage, in dealing with cyclo-correlation

instead of correlation function, is that noise contribution
is considerably reduced in the former case. In fact, due to
the stationarity assumption of the noise process, we have:

1

N

n1X
n=n0

w(n+ k)w(n)
�
e
j�n N!1

�! 0

when

1

N

n1X
n=n0

w(n+ k)w(n)
� N!1

�! �(k)

�(k) being the k-th correlation factor of the noise process.
Generally, for additive colored noise, the signal to noise
ratio (SNR) gain, can be considerable since, for �(k) 6= 0,
we have

j

P
n1

n=n0
w(n+ k)w(n)�P

n1

n=n0
w(n+ k)w(n)�ej�n

j �! 1

2.2. A linear prediction approach

It is well known that for the signal r� (k) there exists a
unique set of complex coe�cients fhi; i = 0; � � � ; Lg with
h0 = 1 such that [10]

h0r
�(k) + h1r

�(k � 1) + � � �+ hLr
�(k � L) = 0 (6)

where the polynomial h(z) = h0z
L + h1z

L�1 + � � � + hL
is the linear prediction (LP) polynomial for the noiseless

signal r� , and has roots zi = e
b
i ; 1 � i � L. Thus,

if the coe�cient vector h = [h0; � � � ;hL]
T is estimated by

some identi�cation method, rooting of h(z) will provide
estimates of bi; 1 � i � L.
Equation (6) can be manipulated for M lags (k =

k0; � � � ;M + k0 � 1) into the following vectorial form

Hr
� = R

�h = 0 (7)

( + ) y g y

H =

0
@

hL � � � h0 � � � 0
...

. . .
. . .

...
0 � � � hL � � � h0
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and

R
� =

0
@

r
�(k0) � � � r

�(k0 � L)
...

...
r
�(k0 +M � 1� L) � � � r�(k0 +M � 2L)

1
A

Remarks: 1) The minimum number of independent
equations required to estimate the L unknown coe�cients
of the LP polynomial is L. In other words, the number of
lags should be chosen such that M � L.

2) In equation (7), we assume implicitly that the num-
ber of damped sinusoids is known. In practice, it is not
the case and the sinusoids number needs to be estimated.
Many estimation procedures can be found in the literature
[11, 12, 13], however this problem is beyond the scoop of
this paper and will not be treated in the sequel.

3) Since the number of terms involved in the estima-
tion of the k-th cyclo-correlation factors is a decreasing
function of jkj, the value of k0 should be chosen such that
max(jk0 � Lj; jk0 � L+M � 1j) is minimum.

4) Due to the �nite sample length and the noise e�ects,
equation (7) has not an exact solution. In practice, the
LP polynomial h can be estimated by minimizing the least
squares criterion:

ĥ = Argmin
h

kR
�hk2 = h�R��

R
�h (8)

5) The linear prediction approach is not the unique
choice to estimate the damped sinusoids parameter. Oth-
ers estimation techniques [5, 1] can be applied to the pre-

processed signal r� . In particular, the Cyclo-Correlation
based Matrix Pencil method (referred as CCMP method)
will be used in the sequel for performance comparison (see
section 3).

2.3. Variations on the criterion

Equations (7) and (8) provide a criterion to estimate
the coe�cients of the LP polynomial which characterizes
uniquely the damped sinusoids to be estimated. Other in-
teresting strategies for the estimation procedure may be
considered that will not be detailed here, due to the lack
of space. These include:

� Using a weightingmatrix in the criterion (8), in or-
der to improve the estimation performance. Therefore,
the LP polynomial h can be estimated by minimizing
the weighted least squares criterion:

ĥ = Argmin
h

kR
�hk2W = h�R��

WR
�h (9)

where W is any positive de�nite weighting matrix. In
particular, it can be noticed that for W = I (resp.

for W = (HH
�)�1) we retrieve the Prony (resp. the

IQML) criterion [6] applied to the cyclo-correlation
sequence. An optimal choice of the weighting matrix
can be provided based on a statistical analysis of the
estimation error. This study will be detailed in a forth-
coming paper.



y q
is, to increase the signal to noise ration (SNR). Using
(5), it is easy to see that the Riemann integral of the
cyclo-correlation coe�cients is given by:

Z
�1

�0

r
�
(k)d� =

LX
m=1

B(m)e
bmk

(10)

where

B(m) =

LX
l=1

hmh
�

l [j(log(1 � e
bm+b�

l
+j�1 )�

log(1� e
bm+b�

l
+j�0 )) + �1 � �0] (11)

Equation (10) can take the general form:

Z
�1

�0

f(�)r�(k)d�

where f(�) is an appropriate weight ing function.
�0; �1 and f(�) should be chosen to maximize the am-
plitude coe�cients jB(m)j;m = 1; � � �L. Of course,
such maximization procedure is highly non-linear,
and in practice some approximation or sub-optimal
schemes should be rather considered.

� Using di�erent cyclo-correlation coe�cients.
For example, if the additive noise is complex circular
(which implies in particular that E(w(n+ k)w(n)) =
0), we can exploit the circularity of the additive noise,
by replacing (3) by

c
�
(k)

def
=

1X
n=0

y(n + k)y(n)e
j�n

In this case, we can reduce the noise contribution
thanks to both of the cyclo-stationarity and circularity
e�ects.

� Using an iterative estimation procedure, which
is in fact necessary in the case where optimal (or sub-
optimal) choices of the weighting matrix W , the cyclo-
frequencies (�0; �1), and the weighting function f(�)
are considered. Such an optimal choices should de-
pend on the unknown parameters, and at least a two
step estimation procedure is necessary to (i) �rst es-
timate the damped sinusoids using the least square
criterion (8), then (ii) estimate the optimization pa-
rameters function of the previous data model param-
eters.

3. Simulation results

We present here some numerical simulations to assess the
performance of our algorithm. The simulation corresponds
to the example described in [3]. The data model is given
by

y(n) = e
b1n + e

b2n + w(n)

where b1 = �0:2 + j(0:42)2� and b2 = �0:1 + j(0:52)2�.
For each experiment, the sample size is set to N = 64
and Nr = 100 independent Monte-Carlo simulations are
performed. The performance is measured by the mean-
square error (MSE) de�ned by

MSE =

vuut 1

Nr

NrX
r=1

kb̂r � bk2

Figure 1 (respectively �gure 2) compares the perfor-
mances of our method with those of the MP, CCMP, and
IQML methods for white Gaussian additive noise, in the
case where K = 16 realizations (respectively K = 1 real-
ization) are available. We chose M = 18, W = (HH

�)�1,
�0 = 0:1, �1 = 1 and f(�) = 1. The plots show the MSE
(in dB) as a function of the SNR in dB (the SNR is de-
�ned by SNR= 1=�2, where �2 is the additive noise power).
This show the high performance and robustness to additive
noise of the proposed method.

Figure 3 (respectively �gure 4) compares the perfor-
mances of our method with those of the MP, CCMP, and
IQML methods for non-Gaussian colored additive noise, in
the case where K = 16 realizations (respectively K = 1
realization) are available. The noise signal is generated by
�ltering a complex circular uniform distributed white pro-
cess by an MA (Moving Average) model of order two given
by

h(z) = 1 + 0:7z�1 + 0:49z�2

As for the �rst experiment, We chose M = 18, W =
(HH

�)�1, �0 = 0:1, �1 = 1 and f(�) = 1. The plots
show the MSE (in dB) as a function of the SNR (in dB).
As we can see, our method o�ers a signi�cant gain of the
estimation performance.

It is worth to notice that the simulation results shown
in this section depend on the choice of the cyclo-frequency
�. More detailed studies still are necessary to assess the
e�ect of the cyclo-frequency choice on the estimation per-
formance and to verify whether the good estimation be-
havior depends highly or weakly on the considered cyclo-
frequency.
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4. Conclusion

Second order cyclo-stationary statistics were used to derive
a new approach for the estimation of the parameters of ex-
ponentially damped sinusoids. The signal parameters were
calculated by polynomial rooting of a vector of coe�cients,
which was the solution of a linear system of equations in-
volving cyclo-correlation coe�cients. The main advantage

y
very weak assumptions or a priori knowledge on the noise
distribution.
For the evaluation of the performance of the new

method, the IQML algorithm was used for comparison.
It was demonstrated through simulations that when the
additive noise is non-Gaussian or colored with unknown
autocorrelation function, the proposed method o�ers a sig-
ni�cant improvement in the estimation performance. Fur-
thermore, even in the case of additive white Gaussian noise
our method seems to be more robust to additive noise es-
pecially for very low SNR.
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