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ABSTRACT

We are considering a problem of carrier frequencies recovery
for the linear mixtures of two BPSK signals in Gaussian noise.
The goal is to simplify further signal analysis: signal separation,
modulation identification and parameters estimation. The pre-
sented method is based on multidimensional (time-frequency-
phase) representation of the Higher Order Statistics (HOS) of the
received signal distribution. Performance of the proposed algo-
rithm is verified through extensive simulations and compared to
the MUSIC high-resolution spectral estimation method. Corre-
sponding results show that our technique outperforms the latter
for all considered frequency shifts, even for high signal-to-noise
ratios (SNR).

1. INTRODUCTION

In modern Communication Intelligence (COMINT) systems,
there is a need to recognize the applied modulation type [1–6]
to more reliably identify the source of an emission or to choose
an appropriate method of jamming. All these algorithms assume
that received signal is mono-component.

Nowadays, the problem of classifying two or more signals that
are closely distributed in a frequency domain is gaining atten-
tion. If the signals can’t be separated by filtering (or the results
are insufficient), the Blind Signal Separation (BSS) approach can
be taken into consideration [7–13]. For undetermined problems
(less observations than sources), some assumptions have to be
made: sources are independent, signal types, characteristic fre-
quencies, as well as timings are known to the receiver.

When these conditions are not met, carrier frequency recov-
ery is enforced at the very beginning. From the COMINT point
of view, information concerning the number and types of signals
in a mixture is unavailable, limiting the use of some well-known
frequency estimation algorithms [14–19].

To overcome these limits and fill the gap between frequency
estimation and signal separation/recognition methods, we pro-
pose a brand new algorithm based on the constellation rotation
of the received signal, and the 2nd and 4th order moments of a
1D distribution of its in-phase component as the functions of fre-
quency and rotation angle. Using the Fourier Series Expansion,
we extract noise invariant features which are then used to esti-
mate two frequencies of a linear mixture of two BPSK signals.

2. SIGNAL MODEL

Let us consider a digital modulation scheme with the complex en-
velope x(t ) expressed as:

x(t ) =
∑

k

dk h(t −kT ), k ∈ {1, 2, . . . , K } (1)

where dk is a signal’s constellation (information contents), h(t )
is a pulse shaping function, T is a symbol duration, and K is a
number of available symbols.

Taking into account only linear modulations, a multi-
component signal s(t ) can be expressed as:

s(t ) =
∑

i

Ai xi (t )e j (ωi t+θi ) (2)

where Ai , ωi , and θi describe i -th carrier and are accordingly: its
amplitude, its frequency and its phase.

Narrowing further analysis by assuming that: h(t ) is rectan-
gular, there are two signals in a mixture, and both of them are
BPSK types (dk ∈ {e j 0,e jπ})1, one can express received signal r (t )
as:

r (t ) = A1e j (ω1t+ϕ1(t )+θ1) + A2e j (ω2t+ϕ2(t )+θ2) +n(t ) (3)

where ϕ1(t ) and ϕ2(t ) are binary sequences:

ϕ(t ) ∈ {0, π}, t ∈ [kT, (k +1)T [ (4)

and n(t ) is a complex, Additive White Gaussian Noise (AWGN)
with probability density functions (PDF) of its real and imaginary
parts expressed as:

fRe[n](n) = fIm[n](n) =N (0,σ) (5)

with

N (µ,σ) ,
1

σ
p

2π
exp

[

−
(x −µ)2

2σ2

]

(6)

Without loss of generality, it is assumed that all modulation
states ϕk (t ) are equiprobable i.i.d. processes (independent and
identically distributed).

3. ALGORITHM DESCRIPTION

3.1 Theoretical Background

Using the signal model presented in the previous section, one can
find a downconverted signal S(t ) by means of the complex expo-
nential e− j (ωt+α):

S(t ) = A1e j ((ω1−ω)t+ϕ1(t )+θ1−α)

+ A2e j ((ω2−ω)t+ϕ2(t )+θ2−α)

+n(t )e− j (ωt+α)

(7)

At every point in time, the PDF of its real part fRe[S](S(t )) can be
expressed by means of 4 gaussian distributions:

fRe[S](S(t )) = 1
4 [N (s11,σ)+N (s12,σ)

+N (s21,σ)+N (s22,σ)]
(8)

1These assumptions are quite common in the field of BSS.



where mean values skl correspond to all possible combination of
2 characteristic states (two BPSK signals):

s11 = A1 cos((ω1 −ω)t −α+θ1)

+ A2 cos((ω2 −ω)t −α+θ2)
(9)

s12 = A1 cos((ω1 −ω)t −α+θ1)

+ A2 cos((ω2 −ω)t −α+θ2 +π)
(10)

s21 = A1 cos((ω1 −ω)t −α+θ1 +π)

+ A2 cos((ω2 −ω)t −α+θ2)
(11)

s22 = A1 cos((ω1 −ω)t −α+θ1 +π)

+ A2 cos((ω2 −ω)t −α+θ2 +π)
(12)

Knowing that distribution (8) is symmetric with respect to the
origin, and using the formulas for 2nd and 4th order moments of
Gaussian distribution:

m
g
2 =µ2 +σ2, m

g
4 =µ4 +6µ2σ2 +3σ4 (13)

it is straightforward to find moments of fRe[S](S(t )) as the func-
tions of frequency, phase, and time:

m2(ω,α, t ) = A2
1 cos((ω1 −ω)t −α+θ1)2

+ A2
2 cos((ω2 −ω)t −α+θ2)2 +σ2

(14)

m4(ω,α, t ) = A4
1 cos((ω1 −ω)t −α+θ1)4

+ A4
2 cos((ω2 −ω)t −α+θ2)4

+6A2
1σ

2 cos((ω1 −ω)t −α+θ1)2

+6A2
2σ

2 cos((ω2 −ω)t −α+θ2)2

+6A2
1 A2

2 cos((ω1 −ω)t −α+θ1)2

·cos((ω2 −ω)t −α+θ2)2 +3σ4

(15)

In practice, we have often only one realization of the finite
length signal, and what we can observe is the averaged value over
the observation period T0:

m2(ω,α) =
1

T0

∫+T0/2

−T0/2
m2(ω,α, t ) d t (16)

m4(ω,α) =
1

T0

∫+T0/2

−T0/2
m4(ω,α, t ) d t (17)

These values can be decomposed into the Fourier Series Ex-
pansion as follows:

m2(ω,α) = a20(ω)
2 +a22(ω)cos(2α)+b22(ω)sin(2α) (18)

m4(ω,α) = a40(ω)
2 +a42(ω)cos(2α)+b42(ω)sin(2α)

+a44(ω)cos(4α)+b44(ω)sin(4α)
(19)

with

akl (ω) =
1

π

∫+π

−π
mk (ω,α)cos(lα) dα (20)

bkl (ω) =
1

π

∫+π

−π
mk (ω,α)sin(lα) dα (21)

In-deep analysis of coefficients akl (ω) and bkl (ω) shows that
only combinations {kl } ∈ {22, 44} provide independence of noise.
Additionally, they can be equally represented in terms of ampli-
tude ckl (ω) and phase ϑkl (ω):

ckl (ω) =
√

a2
kl

(ω)+b2
kl

(ω) (22)

ϑkl (ω) =−arctan

[
bkl (ω)

akl (ω)

]
(23)

Neglecting the phase ϑkl (ω), and averaging over all possible
initial phases (θ1,θ2)

Ck (ω) =
1

4π2

∫+π

−π

∫+π

−π
c2

kk (ω) dθ1 dθ2 (24)

one eventually finds:

C2(ω) =
A4

1

4

[
sin(T0(ω−ω1))

T0(ω−ω1)

]2

+
A4

2

4

[
sin(T0(ω−ω2))

T0(ω−ω2)

]2
(25)

C4(ω) =
A8

1

64

[
sin(2T0(ω−ω1))

2T0(ω−ω1)

]2

+
A8

2

64

[
sin(2T0(ω−ω2))

2T0(ω−ω2)

]2

+
9A4

1 A4
2

16

[
sin(2T0(ω− ω1+ω2

2 ))

2T0(ω− ω1+ω2
2 )

]2

(26)

To visualize these relations we have fixed: ω1 = −1, ω2 = 1, and
T0 = 4. Corresponding results for different ratios between ampli-
tudes are presented in the figure 1.
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Figure 1: Coefficients C2(ω) (solid line) and C4(ω) (dash-dot line)
for different ratios between amplitudes.

It is clear that by using coefficients C2(ω) and C4(ω), one can
find the following estimators:

ω̂1,2 = max
ω

[C2(ω)] (one of two frequencies) (27)

ω̂0 = max
ω

[C4(ω)] (mean frequency) (28)

Further analysis of the relations between amplitudes in equation
(26) shows that estimator ω̂0 is valid if

A8

64
<

9A8η4

16
⇐⇒ η>

√
1

6
≈ 0.4 (29)

with

η= min

[
A1

A2
,

A2

A1

]
(30)

To overcome this limit, we propose a modification based on
correlations between C2(ω) and C4(ω). Naming correlations as

rC2C2 (ω) =C2(ω)∗C2(−ω)∗ (31)

rC2C4 (ω) =C2(ω)∗C4(−ω)∗ (32)

it is possible to prove that function

R(ω) =
rC2C4 (ω)

max[rC2C4 (ω)]
−

rC2C2 (ω)

max[rC2C2 (ω)]
(33)



can be used to estimate

max
ω

[R(ω)] ⇐⇒
ω̂1 − ω̂2

2
or

ω̂2 − ω̂1

2
(34)

For A1 > A2, the maximum value of R(ω) corresponds to (ω̂1 −
ω̂2)/2; otherwise, to (ω̂2 − ω̂1)/2.

Using the same set of parameters as before (as in figure 1),
we have visualized the function R(ω) for different ratios between
amplitudes, and the corresponding results are presented in the
figure 2.
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Figure 2: Coefficient R(ω) for different ratios between amplitudes.

3.2 Practical Implementation

The algorithm can be decomposed into two main parts: a raw es-
timation, and a fine-tuning part. The aim of the first is to provide
a frequency band (Frequency Raster) in which the fine-tuning
part will search for exact frequency locations.

First of all, the algorithm estimates power spectral density
(PSD) of the received signal by using the Welch [20] modified pe-
riodogram method. Next, an heuristic threshold is applied to the
PSD to extract only the meaningful part of the signal spectrum.
Finally, the extracted part is used to construct a Frequency Raster.

The fine-tuning part is implemented as a downconversion
with the frequencies chosen from the Frequency Raster. The re-
sulting baseband signal is then rotated (α ∈ [−π,π]), and for each
α, 2nd and 4th order moments are estimated. Next, the Fourier
Series Expansion is applied to extract C2(ω) and C4(ω). Finally,
based on equations (31), (32), and (33), the R(ω) is computed and
the maximum searching algorithm is applied to both C2(ω) and
R(ω).

Using the relations (27) and (34), it is simple to find the esti-
mators of two frequencies:

ω̂1 = max
ω

[C2(ω)] (35)

ω̂2 =
{
ω1_2 if C2(ω1_2) >C2(ω2_1)
ω2_1 otherwise

(36)

with

ω1_2 = ω̂1 −2max
ω

[R(ω)] (37)

ω2_1 = 2max
ω

[R(ω)]+ ω̂1 (38)

One must pay attention to the computational complexity
of this algorithm. The fact that we do not assume any prior
knowledge concerning the locations of the true carrier frequen-
cies makes it necessary to apply the whole Frequency Raster. For
every frequency from this raster, we make a downconversion of
the entire signal to the baseband, and we rotate resulting constel-
lation using discretized angles. The amount of calculations (com-
plex multiplications) can be important, making this algorithm (in
the current state) inapplicable for real-time systems when num-
ber of signal samples is large. The methods of reducing the influ-
ence on performance of this factor are currently being examined.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, exten-
sive simulations were conducted on the linear mixtures of two
BPSK signals. Signals were composed of 1025 samples, 5 sam-
ples per symbol, 1000 different realizations. The initial phases
were randomly chosen from the range [−π,π], the SNR was vary-
ing from 0 dB to 30 dB, and the ratio between amplitudes η was
varying from 0.2 to 1. Frequency distance between two signals
was fixed to 4/T0 (≈ 31 Hz when sampling frequency Fs = 8000
Hz). Corresponding variances2 are presented in a figures 3.a (es-
timator ω̂1) and 3.b (estimator ω̂2) for: η= 0.2 – solid line, η= 0.6
– dotted line, and η= 1 – dashed line.
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Figure 3: Simulation results for estimators ω̂1 and ω̂2.

It is clear that best averaged performance of the proposed al-
gorithm is obtained when η≈ 0.5. For η→ 0 (only one signal in a
mixture), C2(ω) has only one dominant maximum (unbiased esti-
mator with variance determined by T0) which leads to very accu-
rate results for the first frequency, and at the same time, the worst
for the second one (there is no second signal). For η→ 1 (two sig-
nals have the same amplitudes), the performance degrades be-
cause of the mutual influence between maximals (bias caused by
”secondary lobes”) for both C2(ω) and R(ω) (cf. figures 1.a and
2.a).

The second experiment was conducted to compare our HOS-
based Frequency Estimation (HOSFE) technique with a well-
known MUSIC [21] spectral estimation method. We have fixed:
Fs = 8000 Hz, η = 1 (A1 = A2), SNR = 20 dB, 4th order MUSIC
method3, and the shift between two frequencies ∆ f T0 = | f2 −
f1|T0 from 1 to 128 (from ≈ 7.82 Hz to ≈ 1000 Hz). Corresponding
results are presented in the figure 4.a (HOSFE) and 4.b (MUSIC)
for estimators: ω̂1 – solid lines, and ω̂2 – dashed lines.
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Figure 4: Comparison between HOSFE and MUSIC methods for
estimators ω̂1 (solid lines) and ω̂2 (dashed lines).

There are two advantages of our method compared to the
MUSIC method: the variances of both estimators are almost the
same, and they decrease when the observation time T0 and/or

2σ2
ω(ω̂i ) = Var

{
(ω̂i −ωi )/2πFs

}

3Simulations for the 2nd and 8th order MUSIC were conducted as well,
giving the considerably worse results.



frequency distance ∆ f increases. In the MUSIC case, even if
the first frequency is estimated correctly, the second frequency
may have a variance which is more than 100 times greater (espe-
cially for small frequency shifts). In addition, even for ∆ f T0 > 64
(variances of both estimators are similar), the performance of
our algorithm is almost 106 times better compared to the MU-
SIC method. The averaged variances are: σ2

ω ≈ 2.2 · 10−10 for
the HOSFE algorithm, and σ2

ω ≈ 2.5 ·10−4 for the MUSIC method
when ∆ f T0 = 128.

5. CONCLUSION

Our new algorithm is targeted a multi-carrier frequency recov-
ery for linear mixtures of digital, linearly modulated signals in
Gaussian noise. The presented method is based on 2nd and 4th

order moments of the received signal as the functions of rotation
angle and frequency. Extracted features are independent of the
initial carrier phases, symbol timings, and are very efficient with
respect to SNR. The performance of the algorithm is assessed
through extensive simulations and then compared to the MU-
SIC high-resolution method. Corresponding results show that
our technique outperforms the latter for all considered frequency
shifts even for high SNR (almost 106 times better). Its high accu-
racy makes it applicable as a preprocessing step for blind signal
separation/recognition algorithms.

Although, theoretical background and simulation results are
provided only for mixtures of two BPSK signals, extension to more
than two BPSK signals in a mixture is straightforward: C2(ω) will
have as many peaks (of type Sinc2(x)) as signals, and R(ω) will
contain peaks which correspond to different combination of type
(mω1±nω2)/2. In this case, the problem appears when A1 6= A2 6=
A3 . . . – components with small amplitudes will be hardly visible
in C2(ω), and one must take into consideration the peaks from
R(ω). For a large number of components, there will be large num-
ber of possible combinations between the frequencies, and am-
biguous results will determine the overall performance.

An in-depth analysis of this problem, as well as extension
of this method for the case with: other than BPSK signal types
(ex. QPSK or QAM), convolutive mixtures and more realistic fil-
ter types (raised-cosine filter instead of rectangular one), are our
current topics of interest.
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