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ABSTRACT

For the convolutive mixture, a subspace method to

separate the sources is proposed. It is showed that

after using only the second order statistic but more

sensors than sources, the convolutive mixture can be

itenti�ed up to instantaneou mixture. Furthermore,

the sources can be separated by any algorithm for

instantaneous mixture (based in generally on the

fourth order statistics).

1 INTRODUCTION

A number of e�cient second order statistics based

methods have been recently developed to solve the

so-called blind multichannel equalization problem

([1], [2] and [3]). In these works, the observation

is a q{variate signal supposed to be the output

of a single input / q{outputs unknown FIR �lter

driven by a non observable scalar sequence. In the

digital communication context, this sequence rep-

resents the symbols to be transmitted, while the

unknown �lter is due to the multi-paths e�ects.

If the scalar sequence is replaced by a p{variate

signal s(n) = (s1(n); : : : ; sp(n))
T (with p < q)

whose components are statistically independent

signals, the above problem is nothing but in source

separation problem a convolutive mixture. In this

context, each component s
k
(n) of s(n) is a possi-

bly temporally correlated signal with an unknown

spectrum. It has been shown recently [4, 5] that the

so-called subspace approach of [1] can be general-

ized to the context of the source separation of con-

volutive mixtures. In particular, under certain as-

sumptions to be precised below, the unknown FIR

q�p transfer function H(z) can be identi�ed up to
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a constant mixture matrix from the sole knowledge

of the second order statistics of the observations.

After this preliminary identi�cation stage, the out-

puts are �ltered by a left inverse of the identi�ed

�lter, thus providing a p{variate signal from which

s(n) can be retrieved by solving source separation

problem in instantaneous mixture.

However, this approach is not well suited to

adaptive implementation. In this context, it may

be more convenient to adapt directly a left inverse

of the �lter H(z) from the observations. Such a

second-order based direct deconvolution approach

has been proposed by Gesbert et al [6] in the multi-

channel blind equalization context. This method is

quite attractive : it does not require the knowledge

of input spectrum, and is based on the minimiza-

tion of a simple quadratic cost function, which can

be realized adaptively by a LMS algorithm. The

purpose of this paper is to indicate how this ap-

proach can be adapted to the source separation of

convolutive mixture considered here. Finally, one

should note that Van der Veen et al. [7] have also

proposed an interesting second order based direct

deconvolution approach in the source separation

context.

2 GENERAL NOTATIONS AND AS-

SUMPTIONS.

Let us �rst precise the notations and the assump-

tions used throughout this paper. We denote by

y(n) the q{variate observed signal. It is assumed

that :

y(n) =

MX
i=0

H(i)s(n� i) = [H(z)]s(n) (1)
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where H(z)
�
=
P

p

i=1H(i)z�i
�
= [H1(z); : : : ; Hp

(z)]

is an unknown FIR q�p (with p < q) transfer func-

tion and where the non observable inputs s(n) =

(s1(n); : : : ; sp(n))
T are stationary signals such that

for each k 6= l, s
k
and s

l
are statistically indepen-

dent. We denote by M1; : : : ;Mp
the degrees of the

columns1 H1(z); : : : ; Hp
(z) ofH(z), and we assume

without restrictions that M1 � M2 � : : : � M
p
.

Moreover, we set M
p
= M . From now on, we make

the following important assumptions on the trans-

fer H(z).

� H1: H(z) is irreducible (Rank(H(z)) = p; 8z).

� H2: H(z) is column reduced, i.e. the highest

coe�cient matrixH1(M1); : : : ; Hp
(M

p
) is a full

rank column matrix.

As soon as p < q, these assumptions have been

shown in [8] (see also [4]) to be realistic. They

have the following important consequences in the

sequel :

First, assumption H1 implies the existence of a

(non unique) p � q polynomial matrix G(z) such

that G(z)H(z) = I
p
. In others words, H(z) can

causally be left inverted by a polynomial matrix, or

equivalently, the source signal s(n) can be perfectly

recovered from a �nite number of past observations.

On the other hand, let us denote by T
N
(H) the so-

called q(N + 1)� (M + N + 1)p Sylvester matrix

associated to H(z)

2
64
H(0) : : : H(M) 0 : : : 0
...

...

0 : : : 0 H(0) : : : H(M)

3
75 : (2)

Then, it can be shown (see [9], in chapter 6)

that under assumptions H1;H2, Rank(T
N
(H)) =

p(N+1)+
P

p

i=1Mi
, as soon as N �

P
p

i=1Mi
. One

should note that p(N+1)+
P

p

i=1Mi
is precisely the

number of non zero columns of T
N
(H). In partic-

ular, if all the degrees (M
i
)
i=1;p coincide with M ,

then, T
N
(H) is full rank column if N � pM . It

admits therefore a left inverse.

In the follow, if we will discuss on two di�erent

model parametrizations, corresponding to the cases

of equal or not equal degree on the column of H(z)

1By de�nition, the degree of a column vector Hi(z) is

maximum degrees between all his coe�cient.

3 THE PROPOSED APPROACH.

3.1 THE CASE OF EQUAL DEGREES.

In order to simplify what follows, we �rst present

our blind deconvolution scheme in the case where

the degrees (M
i
)
i=1;p all coincide with M . Its for-

mulation is an obvious generalization of the method

proposed by Gesbert et al. [6].

Let Y
N
(n) and S

M+N (n) the random vectors de-

�ned by Y
N
(n) = (yT (n); : : : ; yT (n � N))T and

S
M+N(n) = (ST(n); : : : ; ST(n�M �N))T . Then,

the equation (1) writes in a matrix form

Y
N
(n) = T

N
(H)S

M+N(n): (3)

Let us choose N � pM . Then, as mentioned pre-

viously, T
N
(H) is left invertible, so that it exists

a p(M + N + 1) � q(N + 1) matrix G for which

GT
N
(H) = I

p(M+N+1), i.e., GYN (n) = S
M+N (n).

On the other hand, GY
N
(n+1) = S

M+N (n+1). So

it is obvious that the �rstM+N block (p�q(N+1))

rows of GY
N
(n) are equal to the last M +N block

rows of GY
N
(n + 1). The important point lies on

the fact that this last property characterizes the

left inverses of T
N
(H). More precisely, if G is a

p(M +N + 1)� q(N + 1) matrix for which

(I(M+N)p 0
p
)GY

N
(n) = (0

p
I(M+N)p)GYN (n+ 1)

for each n, then

GT
N
(H) = diag(A; : : :; A): (4)

for some p � p matrix A. To show this, we denote

B = GT
N
(H), and remark that B satis�es

(I(M+N)p 0
p
)(0

p
B)S

M+N+1(n) =

(0
p
I(M+N)p)(B 0

p
)S

M+N+1(n)

for each n, where 0
p
is a (M + N)p � p zero ma-

trix. Under very weak assumptions on the input

sequences (the inputs should be persistently ex-

citing), this implies that (I(M+N)p 0
p
)(0

p
B) =

(0
p

I(M+N)p)(B 0
p
). And, it is easily seen that

this relation hold if and only if B is block diagonal

as in (4). Therefore, it is possible to identify a left

inverse of T
N
(H) by minimizing the cost function:

C(G) = Ek(I(M+N)p 0
p
)GY

N
(n)�

(0
p
I(M+N)p)GYN (n+ 1)k2 (5)

under a constraint ensuring that the matrix A cor-

responding to the argument G of the minimum
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through (4) is invertible. In this case, the �rst

p{components of GY
N
(n) write as As(n) for an in-

vertible matrix A, from which s(n) can be retrieved

by using a source separation algorithm for instan-

taneous mixtures. For this purpose, we propose to

minimize (5) under the constraint G0RY
G
T

0 = I
p
,

where G0 is the �rst block row (p� q(N+1)) of G,

and R
Y
= EY

N
(n)Y

N
(n)T is the covariance matrix

of Y
N
(n).

In practice, the above minimization algorithm

can be solved adaptively by a classical LMS algo-

rithm, but in which the current estimate G(n) of

G is normalized at each step in such a way that

the constraint is satis�ed (this can be done by cal-

culating a square root of G(n)R̂
Y
(n)G(n)T where

R̂
Y
(n) is an estimate of R

Y
.

For convolutive mixtures involving a causal �lter

of 3th order, two inputs and four outputs, the min-

imization of 5 leads to G T
N
(H) which is the diag-

onal bloc matrix shown in �g (1). After computing

G, the separation of the instantaneous mixture is

achieved using a modi�ed version [10] of Jutten-

Herault algorithm [11]. It succeeds in separating

stationary sources, with about -20 dB of residual

crosstalk.
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Figure 1: GT
N
(H)

3.2 THE CASE OF NON EQUAL DE-

GREES.

We now indicate how to adapt the above proce-

dure to the case where the degrees of the columns

of H(z) do not coincide. In order to simplify the

notations, we shall present in detail the correspond-

ing scheme in the particular case where the source

number p = 2. The results corresponding to the

most general case will be presented without justi�-

cation.

In order to treat this problem, it is more conve-

nient to introduce the q(N+1)�(M1+M2+2(N+

1)) matrix U
N
(H) given by

U
N
(H) = (T

N
(H1); TN(H2)):

It is clear that T
N
(H) and U

N
(H) have the same

rank. Therefore, if N is chosen greater than M1 +

M2, UN
(H) is full rank column, and admits a left

inverse. On the other hand, the equation (1) writes

as Y
N
(n) = U

N
(H)(sT1;M1+N

(n); sT2;M2+N
(n))T

where the vectors s
i;Mi+N (n) are de�ned as

S
M+N(n). The deconvolution approach still con-

sists in identifying a left inverse of U
N
(H). Let G

be a candidate matrix, and put G =

 
G1

G2

!
where

G
i
is a (M

i
+N+1)� q(N+1) for i = 1; 2. Denote

B =

 
B11 B12

B21 B22

!
= GU

N
(H) (6)

where B
ij
is (M

i
+N + 1)� (M

j
+N + 1). Let us

characterize the matrices G for which :

(I(Mi+N) 0)G
i
Y
N
(n) = (0 I(Mi+N))Gi

Y
N
(n+ 1)

for i = 1; 2. Replacing Y by its expression in terms

of S, and assuming that the inputs are persistently

exciting, we get immediately that

(I(Mi+N) 0)(0 B
ij
) = (0 I(Mi+N))(Bij

0)

for (i; j) = 1; 2. This implies that B11 =

a1IM1+N+1, B22 = a2IM2+N+1, B21 = 0, and that

B12 =

0
BBBB@

b0 b1 : : : b
M2�M1

0 : : : 0

0 b0 : : : b
M2�M1

0 : : : 0
...

0 : : : 0 b0 b1 : : : b
M2�M1

1
CCCCA :

Denote b the vector b = (b0; b1; : : : ; bM2�M1
)T .

Therefore, G2YN (n) = a2s2;M2+N (n) and

G1YN (n) = a1s1;M1+N (n)+0
BBB@

b
T

s2;M2�M1
(n)

b
T

s2;M2�M1
(n� 1)

: : :

b
T

s2;M2�M1
(n�M1 �N)

1
CCCA :
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Then, such a matrix G allows to retrieve directly

the source signal corresponding to the highest de-

gree column of H(z). But, the extraction of the

signal �ltered by the lowest order �lter needs an

additional algorithm. A possible solution consists

in �rst extracting s2, and then in using a classical

substraction algorithm in order to cancel the con-

tribution of signal s2 into G1YN (n). Note that this

last step is will based on the second order statistics

of the outputs. Therefore, if M1 < M2, it is possi-

ble to retrieve s1 and s2 by using only the second

order statistics of the observations. This is in ac-

cordance with the results presented in [4] and [8].

This procedure can be used in an adaptive context.

But to the lack of space, the corresponding results

will be presented elsewhere.

This approach can be extended to the general

case p > 2. As above, if M1 < M2 < : : : < M
p
, the

separation of the sources can be achieved by using

only the second order statistics of the observations.

Generally, if two (or more) �lters have the same

degree, it leads to a separation of the corresponding

sources up to an instantaneous mixtures as in (4).

Then the complete separation needs a second step

of instantaneous separation involving basically high

order statistics.

4 CONCLUSION

In this paper, we proposed a method based on a
subspace approach. The method allows the separa-
tion of convolutive mixtures of independent sources
using mainly second order statistics. A simple in-
stantaneous mixtures, separation of which needs
high-order statistics, appears only if �lters have the
same order. Most of the parameters can be esti-
mated using a simple LMS algorithm.
However, the algorithm is up to now slow, due
to large size matrices and LMS method. More-
over, the algorithm requires to know the degrees of
the �lters. Currently, we study another algorithm
based on Gradient Conjugate in order to improve
convergence speed and be able to process station-
ary as well as non stationary signals.
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