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Abstract

We derive and analyze a new pattern recognition approach for automatic modulation recogn
MPSK (2, 4, and 8) signals in broad-band Gaussian noise. Presented method is based on con
rotation of the received symbols, and a 4th order cumulant of a 1D distribution of the signal’s in-
component. Using Fourier series expansion of this cumulant as a function of the rotation an
extract invariant features which are then used in a neural classifier. Discrimination power of th
posed set of features is verified through extensive simulations, and the performance of the su
algorithm is compared to the maximum-likelihood (ML) classifiers. Corresponding results sho
our technique is comparable to the coherent ML classifier and outperforms the non-coherent
ML method for all considered signal-to-noise ratio (SNR) without the computational overhead
latter.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Automatic classification of an applied modulation type has received internationa
entific attention for over a two decades now. It can be considered as an intermedia
between signal interception and information recovery. When the modulation sche
identified, an appropriate demodulator can be selected to demodulate the signal a
to recover the information.

Applications of such algorithms are primary military ones—in COMINT (commu
cation intelligence), one need to recognize the applied modulation type to more re
identify the source of an emission (ESM—electronic support measure). It is also
in choosing the appropriate method of jamming (ECM—electronic counter measur
to protect oneself (ECCM—electronic counter counter measure). Another group of
cations can be found in the communications systems—spectrum monitoring, interf
identification, universal demodulator, or software radio are the most promising ones

Many modulation recognition techniques have been published in the literature.
authors solve the problem using the decision-theoretic approach [1–4], others [5–9]
ing pattern recognition algorithms. An extensive study of different modulation recogn
methods can be found in a book written by Azzouz and Nandi [10].

Different order statistical moments and cumulants are the base for algorithms pro
in [6] (moments of the instantaneous phase), [11] (nonlinear combination of 2nd an
order moments of the signal), [12] (different statistics of the instantaneous amplitude,
and frequency), [13] (eigendecomposition of spatial moments arranged in a symmetr
itive definite matrix), [14] (different order cumulants and a hierarchical classifier), or
(4th, 6th, and 8th order cyclic cumulants).

In this contribution, we propose a new pattern recognition approach based on sta
properties of the constellation of the received signal. We overcome dimensionality pr
in case of 2D distributions by rotating the constellation of the received symbols, and
analyzing 1D distribution of the in-phase component. Based on Fourier series exp
of the 4th order cumulant, we extract a set of invariant features which are then use
neural classifier.

2. Signal model

Let us assume that signal’s carrier frequency is known to the receiver or it can b
rectly estimated [16–20]. After quadrature downconversion, the received MPSK (M-ary
phase shift keying) signal can be written as

s(t) = AeiΘ

K∑
k=1

eiϕkh(t − kT ) + z(t), (1)

ϕk ∈ {2π
M

(m − 1), m = 1,2, . . . ,M
}
, (2)

whereA is a carrier amplitude,Θ is a carrier phase,K denotes the number of observ
symbols,ϕk describes constellation of the signal,h(t) is a pulse shaping function,T is a
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symbol duration, andz(t) corresponds to a complex, zero-mean, additive white Gaus
noise (AWGN).

Sampling the output of a blind channel equalizer [21–28] at a symbol rate, thkth
received symbol can be expressed as

s[k] = (
p[k] + zp[k]) + i

(
q[k] + zq [k]), (3)

wherep[k] andq[k] are signals’s in-phase and quadrature components

p[k] = Acos(ϕk + Θ) and q[k] = Asin(ϕk + Θ) (4)

andzp[k] andzq [k] are equivalent baseband noise components.
Without loss of generality, we assume that all modulation states (ϕk) are indepen-

dent and identically distributed (i.i.d. processes), they are equiprobable (which is a
plished when source coding is applied), and the equivalent noise components (zp and
zq ) are Gaussian, independent (so not correlated), centered and have the same
(σ 2

zp
= σ 2

zq
= σ 2

z ).

3. Distinctive features

To extract the information concerning applied modulation type, one can use a
distribution of the received symbolss[k]. It can be modeled in terms of its in-phase a
quadrature components as a mean ofM 2D probability density function (PDF) over a
constellation points

fpq(x, y) = 1

M

M∑
k=1

N2D
(
x, y;p[k], q[k], σz

)
, (5)

where

N2D(x, y;µx,µy,σ ) � 1

2πσ 2
exp

[
− (x − µx)

2 + (y − µy)
2

2σ 2

]
. (6)

The analyze of such distribution can be simplified by using a method based on 1D
of the rotated constellation1 (multiplication the symbolss[k] by a complex exponentia
eiα). Taking into consideration componentp, the marginal PDF as a function of the rotati
angleα can be expressed as

fp(x;α) = 1

M

M∑
k=1

N (x;µk,σk), (7)

where

µk = Acos(ϕk + Θ + α), σk = σz,

and

N (x;µ,σ) � 1

σ
√

2π
exp

[
− (x − µ)2

2σ 2

]
.

1 It can be also seen as a radon transform of a 2D PDF.
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Its moments can be calculated using the following formulae:

mr(α) =
∞∫

−∞
xrfp(x;α)dx = 1

M

M∑
k=1

∞∫
−∞

xrN (x;µk,σk) dx (8)

and the cumulants using the relation [29]

κr(α) = mr(α) −
r−1∑
l=1

(
r − 1

l − 1

)
κl(α)mr−l (α), κ1(α) = m1(α). (9)

Using the facts that the constellations of MPSK signals are symmetric, zero-mea
are formed as a sum of Gaussians, all odd moments are 0, and the low order even m
can be expressed as2

m2(α) = 1

M

M∑
k=1

µ2
k + σ 2

k , (10)

m4(α) = 1

M

M∑
k=1

µ4
k + 6µ2

kσ
2
k + 3σ 4

k . (11)

Exploiting an expanded form of the 4th order cumulant for symmetric distributions

κ4(α) = m4(α) − 3m2
2(α) (12)

one can write

κ4(α) = 1

M

M∑
k=1

(
µ4

k + 6µ2
kσ

2
k + 3σ 4

k

) − 3

(
1

M

M∑
k=1

µ2
k + σ 2

k

)2

. (13)

Taking into considerations a BPSK signal, one can write corresponding distribution

fp(x;α) = 1

2
N

(
x;Acos(Θ + α),σz

) + 1

2
N

(
x;Acos(Θ + π + α),σz

)
. (14)

Its 2nd and 4th order moments are

m2(α) = A2 cos2(Θ + α) + σ 2
z , (15)

m4(α) = A4 cos4(Θ + α) + 6A2σ 2
z cos2(Θ + α) + 3σ 4

z (16)

and the 4th order cumulant becomes

κ4(α) = −3
4A4 − 1

4A4 cos(4Θ + 4α) − A4 cos(2Θ + 2α). (17)

It should be noted that among the even cumulants, calculating the 4th one is su
enough to identify 2, 4 and 8-PSK signals. The estimator is simple to calculate,
tive in comparison to higher order cumulants (as far as the variance is concerned
there are methods to make it unbiased and/or adaptive [31]. Besides, it is the fir

2 For a Gaussian PDF [30], we havem2 = µ2 + σ2 andm4 = µ4 + 6µ2σ2 + 3σ4.
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Table 1
Coefficients of Fourier series expansion for BPSK, QPSK, and 8PSK signals

c0 c2 c4 ϕ2 ϕ4

BPSK − 3
4A4 A4 1

4A4 2Θ 4Θ

QPSK − 3
8A4 0 1

8A4 0 4Θ

8PSK − 3
8A4 0 0 0 0

(except for the 3rd one which is zero) that is not dependent ofσz (invariant to Gaussian
noise).

It is easy to show that for all MPSK modulation schemes,κ4(α) is a periodic function of
α, it meets Dirichlet conditions, and there are maximum two harmonic components
and/or 4th) and a constant. These properties make possible to express it as an ev
Fourier series

κ4(α) = a0

2
+

∑
l∈{2,4}

[
al cos(lα) + bl sin(lα)

]
= c0 + c2 cos(2α + ϕ2) + c4 cos(4α + ϕ4), (18)

where

al = 1

π

π∫
−π

κ4(α)cos(lα) dα, bl = 1

π

π∫
−π

κ4(α)sin(lα) dα (19)

and

c0 = a0

2
, cl =

√
a2
l + b2

l , ϕl = arctan

(
−bl

al

)
. (20)

Using the relations (13), (19), and (20), it is straightforward to find the coefficien
Fourier series expansion for different MPSK signals. Corresponding results are pro
in Table 1.

It is evident that the information concerning the shape of a constellation is cont
in the coefficientsc0, c2, andc4; ϕ2 andϕ4 carry only the information on initial carrie
phase (Θ).

To obtain the characteristics which are invariant to amplitudeA, one can use the follow
ing normalization schemes:

Cl = |cl |
|c0| + |c2| + |c4| , Cl = c2

l

c2
0 + c2

2 + c2
4

. (21)

Both of them give different values ofCl coefficients, and to determine which one is bet
it is necessary to evaluate the final classifier. In Section 4 (Eqs. (25)–(27)) we descr
application of LDA transform to obtain the features which are used during classific
Using the classifier described there, we have made the simulations and obtained
(probability of error) were the same.

Using the simpler (and faster) method (normalization by sum of absolutes value
obtained
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BPSK: C0 = 3/8, C2 = 1/2, C4 = 1/8, (22)

QPSK: C0 = 3/4, C2 = 0, C4 = 1/4, (23)

8PSK: C0 = 1, C2 = 0, C4 = 0. (24)

It is clear that the coefficientsCl are normalized (Cl ∈ [0,1]) real numbers, independent
the signal (A) and noise (σz) levels, as well as the initial carrier phase (Θ).

In general, forM-ary PSK signals, only theM th harmonic of Fourier series expansi
(except the constant valuea0/2) is non-zero. Knowing that thisM th component can b
seen at least in cumulants of orderM , and the cumulant estimator variance grows
with the cumulant order, it is clear that this method is limited to the caseM = 8 (which is
sufficient for the signals used in practice). The methods to get round with this limit, as
as the verification of this method forM-ary quadrature amplitude modulation (MQAM
signals, is our current topic of interest.

4. Classifier and experimental results

It is obvious that limiting the number of features will make learning and testing fa
and demanding less memory. Aside from this, feature space of a lower dimensio
enable more accurate classifiers for a finite learning set. In this 3-class problem, we d
to reduce the feature space to two dimensions by applying linear discriminant an
(LDA), and then to use a feed-forward neural Network as a classifier.

Based on the characteristics presented in Section 3, and using the Fisher’s criteri

JF = tr{T} = tr
{
S−1

w Sb
}
, (25)

whereSw is the within-class covariance matrix (the sum of covariance matrices com
for each class separately), andSb is the between-class covariance matrix (the covaria
matrix of class means), one can reduce dimensionality of the feature vector

x = [C0,C2,C4]T (26)

by means of a linear transform

y = Wx, (27)

where eigenvectors corresponding to largest eigenvalues ofT form the rows of the trans
formation matrixW.

Using the feature vector in the transformed spacey = [y1, y2]T as the input to the neura
network with one nonlinear hidden layer (3 neurons) and a linear output layer (one
ron per class), we constructed and trained the classifier with the training set of 5000
of BPSK, QPSK, and 8PSK MATLAB generated signals containing 100 and 256
bols. Neurons of the hidden layer had sigmoidal transfer function, and for the tra
purposes we used the Levenberg–Marquardt [33] algorithm. To verify the perform
of the proposed set of features and the classifier itself, we used another, indep
validating set of 5000 trials of the same signal types. Source signals were mode
uniformly distributed on all constellation states, additive noise was modeled as Gau
and SNR= 10 log(A2/2σ 2

z ) was varying from−4 to 14 dB with the step of 2 dB.
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Fig. 1. Signals in a 2D space after dimensionality reduction.

Fig. 2. Probability of error for BPSK, QPSK, and 8PSK signals.

In Fig. 1, we present BPSK, QPSK, and 8PSK signals in a 2D transformed spa
well as the decision regions of the trained classifier. There are 200 different realiz
of each signal composed of 100 symbols, SNR was equal 0 (left figure) and 14 dB
figure).

In Fig. 2, the probability of error (misclassification) (Pe) is shown for the 3 signals a
a function of SNR. Whole validating set (5000 trials) was used during the simulation
the SNR was varying from−4 to 14 dB. Finally, the confusion matrices for SNR= 2 dB
are presented in Table 2.

It is clear that proposed set of distinctive features is very efficient even for low S
Perfect classification can be obtained for all considered signals when SNR> 8 dB (256
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Table 2
Confusion matrices for SNR= 2 dB

Input Output

100 symbols 256 symbols

BPSK QPSK 8PSK BPSK QPSK 8PSK

BPSK 0.9998 0 0.0002 1.0000 0 0
QPSK 0.0554 0.7616 0.1830 0.0032 0.8756 0.1212
8PSK 0.0757 0.4546 0.4697 0.0095 0.2510 0.7395

symbols) and SNR> 10 dB (100 symbols). For a fixed probability of correct classifi
tion (Pcc = 1− Pe � 0.95), classification can be assured when SNR≈ 0 dB (BPSK), and
SNR≈ 4 dB (QPSK and 8PSK) for 256 symbols. When number of available sym
decreases to 100, there is a loss of performance of about 2 dB for all signals.

This loss of performance is due the fact that moments and cumulants are estimate
a finite number of samples. Knowing that these estimators are asymptotically effe
one can anticipate that increasing the number of available symbols improves the cla
performance. From the practical point of view, this number cannot be too big beca
the system inertia (rapid changes are not reflected) and the computational costs (cal
time and used memory). From the other side, if the number of available symbols
small, the loss of performance is twofold: the variances of the estimators increase, a
assumption that all modulation states are equiprobable is no longer valid (extreme
some of the constellation points are not observed).

The most confused modulation types are QPSK and 8PSK—at SNR= 2 dB (100 sym-
bols), the output of the classifier is almost equally divided between the two modu
types.

5. Conclusion

Our new algorithm is targeted automatic modulation recognition of the most com
used in practice modulation types (as far as MPSK signals are concerned). It is theor
independent of the signal and noise levels, as well as the initial carrier and local osc
phases. It is based on statistical properties of the received symbols, thus timing para
(number of samples per symbol and a baud rate) do not influence the output of the cla
It can be incorporated in a COMINT system (after carrier frequency recovery and
channel equalizer blocs) as a part of a more general classifier (MPSK, MQAM, M
OFDM, . . . ).

Proposed set of distinctive features is very efficient even for low SNR. Having at
256 symbols available, perfect classification can be obtained for all considered s
when SNR> 8 dB. Allowing probability of error to bePe ≈ 0.05, classification can b
assured when SNR≈ 0 dB (BPSK) and SNR≈ 4 dB (QPSK and 8PSK).

Comparing our algorithm to the ML classifiers proposed by Sills [34], we can conc
for SNR> 4 dB and 256 symbols, the performance of our algorithm is comparab
that obtained with coherent (all signal parameters assumed known) ML approach,
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better than non-coherent pseudo-ML (all signal parameters are known except the
phase).

Extension of this method to MQAM signaling scheme, as well as searching for o
constellation based features is our current topic of interest. In the future, we will tak
consideration other signal types (DQPSK,�/4-QPSK,�/8-8PSK), as well as the effec
of inter-symbol and co-channel interferences.
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