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Abstract

In this paper, a new subspace adaptive algorithm, for blind separation of convolutive mixture,
is proposed. This algorithm can be decomposed into two steps: At first, the convolutive mixture
will be reduced to an instantaneous mixture (memoryless mixture), using a second-order statistics
criterion based on subspace approach. The second step consists on the separation of the residual
instantaneous mixture.

The minimization of the criterion is achieved using a conjugate gradient method. The exper-
imental results show that the convergence of our algorithm is improved thanks to the use of the
conjugate gradient method. Finally, experimental results are shown.

1 Introduction

The problem of blind separation of independent sources consists in retrieving the sources from the
observation of unknown mixtures of the unknown sources [7, 11, 13]. Since 1990, few methods of
source separation have been proposed in the case of convolutive mixtures (i.e the channel effect can be
considered as a linear filter). These methods were generally based on high order statistics [8, 16, 12, 3].

Recently, some subspace methods have been explored to solve the blind identification or separa-
tion of sources problem [4, 5, 14, ?, 6]. The advantage of these methods is: by using only second
order statistics (but more sensors than sources), we can separate the sources (with some assumptions
concerning the channel filters) or identify the convolutive mixture up to an instantaneous mixture.
The subspace methods are very elegant methods from theoretical point of view, but in general case,
the convergence of these algorithms are relatively slow due to the minimization of large size matrices.

In [14], we proposed a subspace method for a convolutive mixture model based on LMS algorithm.
Unfortunately, that algorithm was very slow due to the large size of the matrices and the use of LMS
method. That algorithm requires mores than 7000 iterations to converge. In this paper we propose
another criterion also based on subspace approach but this criterion is minimized using conjugate gra-
dient algorithm [2]. The convergence of the proposed method is relatively fast, and may be achieved
in less than 1000 iterations.

This new algorithm can be decomposed in two steps: in the first step, by only using second-order
statistics, we reduce the convolutive mixture problem to an instantaneous mixture; then in the second
step, we must only separate sources consisting of a simple instantaneous mixture (typically, most of
the instantaneous mixture algorithms are based on fourth-order statistics).
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2 Channel model

Let us consider p unknown and statistical independent sources S(n) observed by using ¢ sensors Y (n),
with ¢ > p.

Sub-space method
(second-order statistics)
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\Y4
Separation algorithm

Figure 1: General structure.

Denote the channel effect by a ¢ x p polynomial matrix H(z) = (h;;(2)), entries of which h;;(z)
are finite impulse response (FIR) filters, and by M the highest degree of the filters h;;(z). In the
sequel, M will be called the degree of the filter matrix H(z). Denote by H(¢) the real ¢ X p matrix
corresponding to the filter matrix H(z) at time q:

M
H(z) = (hij(2)) = >_H(i)z™". (1)
=0
The mixture vector ¢ X 1, at time n, is given by:
M
Y(n)= S H()S(n— i), 2)
=0
where S(n — 7) is the p x 1 source vector at the time (n — 7). Let us use the following notations:
Yi(n)
YN(n) = ’ (3)
Y(n—-N)
S(n)
Smin(n) = : : (4)
S(n—M —N)

By using N > ¢ observations of the mixture vector, we can formulate the model (2) in another form:

Yn(n) = Tn(H)Symn(n), (5)
where Txn(H) is the Sylvester matrix corresponding to H(z). The Sylvester matrix
g(N +1) X p(M + N + 1) is given by [9]:

H(0) H(1) H(2) ... H(M) 0 0o ... 0
T (H) = 0 H(O) H(1) ... HM-1) HM) 0 ... 0 ‘ (6)
6 ‘ 0 H(0) H(1) H(M)
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3 Criterion and constraint

It is obvious from (4) and (5), that the source separation will be achieved by estimating Sys4n(n). By
consequence the separation can be done by estimating a (M + N + 1)p x ¢(N + 1) left inverse matrix
G of the Sylvester matrix, which exists if the matrix T (H) has a full rank.

It was proved in [1] that the rank of Tn(H) is given by:

p
Rank Ty(H) = p(N + 1)+ > M;, (7)

=1
where M; is the degree of the ¢th column of H(z). The degree of a column is defined as the highest
degree of the filters in this column. It is easy to prove using (7) that the Sylvester matrix has a full

rank and it is left invertible if each column of the polynomial matrix H(z) has the same degree and
N > Mp.

Suppose that G is the left inverse of T (H) then we can remark:

GYn(n) = Suin(n),

GYN(n—I—l) = SM_|_N(n—|—1). (8)

Let us denote by G; the ith block row! of G. By using (8), we can easily demonstrate that:

Yn(n) 0 0
~Yy(n+1)  Yn(n) 0
0 ~Y 1 :
gy(n) = (G17G27"'7G(M+N—|—1)) ‘ N(n—l— ) ‘ |
0 ~Yy(n+1)  Yy(n)
! 0 —Yn(n+1)

= 0.
where G = (G1,G2, ..., Gugn4n)) 18 a p X ¢(N + 1)(M + N + 1) matrix. From the previous
equation (9), a simpler criterion can be derived:
n1
mging > Y)Y (n)GT. (9)
n=ng

The sum operation is added to improve the performances of the experimental results. In addition the
choice of number ny and ny depends on the data and it has some influence on the convergence speed
of the algorithm (in our experimental study, we used 20 < ny — ng < 50).

It was proved for similar criterion [10, ?] that the minimization of this kind of cost function (9)
does not give the Moore-Penrose generalized inverse (pseudoinverse) of the Sylvester matrix Ty (H ),
but a (M + N 4 1)p x ¢(N + 1) matrix G which satisfies that GTn(H) is a block diagonal matrix:

1Gy is p x ¢(N +1) matrix and G = (Gf,...,G%;I_l_NH)T.

254



First International Conference and Exhibition Digital Signal Processing (DSP’98)

GTn(H) =

o oo

where A is an arbitrary p X p matrix.

It is clear that as the algorithm converges, the estimated sources are instantaneous mixtures
(according to a matrix A) of actual sources: in fact using (5) and (10), we find that:

AS(n)
GYn(n) = : (11)

AS(n—:M—N)

To avoid the spurious solution G = 0 and force the matrix A to be an invertible matrix?, we
propose the minimization subject to the constraint:

GiRy(n)GT =1, (12)

where G is the first block row (p x ¢(N +1)) of G, Ry (n) = EYn(n)Yn(n)T is the covariance matrix
of Yny(n) and I, is a (p x p) identity matrix. If the above constraint is verified then:

GiRy(n)GT = ARs(n)AT =1, (13)

where Rs(n) = ES(n)S(n)! is the source covariance matrix. Rs(n) is a full rank diagonal matrix
thanks to the statistical independence of the p sources from each other. As consequence of (13), matrix
A becomes invertible.

Experimentally, the cost function (9) is minimized using a conjugate gradient algorithm [2]. The
algorithm proposed by Chen et al. in [2] can minimize a cost function f(V') with respect to a vector
(V). From theoretical point of view, this algorithm can converge in a number of iterations which is
less than the dimension of V. In our case, the cost function (9) must be minimized with respect to
apXgqN+1)(M+ N+ 1)matrix G. As consequence, the cost function (9) should be decomposed
into p cost functions, each one only depends on one line of G. Afterwards, we can easily apply the

conjugate gradient algorithm to minimize our criterion®.

Finally, the constraint (12) can be satisfied easily by a simple Cholesky decomposition, than Gy
can be normalized by G} = (G, Ry (n)GT)~1/2G at each iteration. In addition, the source separation
of the instantaneous residual mixture is achieved according to the method proposed in [15].

4 Experimental results

Even if the convergence of this algorithm is attained in small number of iterations (in general case, less
than 1000 iterations are needed), the convergence time is relatively important due to the minimization
of large size matrices. For that reason, we present in this section some experimental results in the case
of two sources. Actually, we are looking to improve the algorithm convergence, so we can separate
more than two sources with reasonable time.

230 the separation of the residual instantaneous mixture becomes possible using any algorithm for the separation of
instantaneous mixture
?Because the limitation of the page number, we can not give more details in this article.
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The experimental study shows that for two stationary sources, the convergence of the subspace
criterion (9) is attained with about 800 iterations (see figure 2).

crit
80+
60}
407

20t

200 400 600 goo 'ter

Figure 2: The convergence of the sub-space criterion

In that experiment, four sensors ¢ = 4 and two stationary sources p = 2 were used:

e The first source is an independent identically distributed (iid) signal with an uniform probability
density function (pdf).

e The second signal is output of an AM filter h(z) = 1 + bzl - 4272 4 .22_3, who has an iid
with uniform pdf signal as input.

The channel effect H(z) is considered as a FIR filter of fourth degree (M = 4):

1 =227 2724 123427t Ty 72 4978 4 150
2 — 4zl 44,72 1—2z" 415272423 405:7¢
H(z) = 11—z 404272432321 39224923471 (14)

2427244273~ 1.5274 1421252234044

We can see in figure 3 that the objective of first step of the algorithm was achieved, with G.Tx(H )
being a block diagonal matrix (where A is a 2 X 2 matrix, see (10)).

256



First International Conference and Exhibition Digital Signal Processing (DSP’98)

Subspace-d obal matri x

Figure 3: Performance results: G'.In(H ) should be a block diagonal matrix.

When the minimization of the cost function (9) is achieved, the two (p = 2) output signals z;(n)
are given by Z(n) = (z1(n), 22(n))T = AS(n). The performance of this instantaneous residual mixture

separation [15] is shown in figure 4.
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Figure 4: Performances of the instantaneous residual mixture separation.

Finally, to demonstrate the behavior of our algorithm and its performances, we plot the different

signals in their own plane, as in figure 5.
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(c) First step of the sub-space algorithm z — z; (d) Estimated signals z1 — @

Figure 5: Experimental results.

In figure 5, we remark that the sources s;(n) and sy(n) are statistically independent as are esti-
mated signals 1(n) and z3(n) (for more information concerning the relationship between the distri-
bution of signals and their statistical relationships with each other, see [17]). In addition, from figure
5 (¢) we can say that these signals may be obtained by mixing independent signals with help of an
instantaneous mixtures. Finally, we can see the mixing signals in the figure 5 (b).

5 Conclusion

In this paper, we present a new sub-space algorithm to solve the problem of blind separation of sources
for convolutive mixture. This algorithm is based on the minimization, using the conjugate gradient
algorithm, of a sub-space criterion based on second-order statistics.

The minimization of that criterion can not achieve the separation, but it can transfer the convolu-
tive mixture into an instantaneous mixture. In addition, the separation of the residual instantaneous
mixture can be done using any instantaneous mixture algorithm, typically based on fourth-order
statistics. By consequence, we find that most of the channel parameters can be estimated using only
second-order statistics. The actual version of the algorithm is relatively fast. In general case the
convergence of the sub-space criterion is attained in less than 1000 iterations.

We succeeded in separating two stationary sources, with about -22 dB of residual crosstalk. Cur-

rently, we are trying to separate more than two stationary or non-stationary sources (for example:
speech signals).
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