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Abstract

In this paper, a new subspace adaptive algorithm, for blind separation of convolutive mixture,

is proposed. This algorithm can be decomposed into two steps: At �rst, the convolutive mixture

will be reduced to an instantaneous mixture (memoryless mixture), using a second-order statistics

criterion based on subspace approach. The second step consists on the separation of the residual

instantaneous mixture.

The minimization of the criterion is achieved using a conjugate gradient method. The exper-

imental results show that the convergence of our algorithm is improved thanks to the use of the

conjugate gradient method. Finally, experimental results are shown.

1 Introduction

The problem of blind separation of independent sources consists in retrieving the sources from the

observation of unknown mixtures of the unknown sources [7, 11, 13]. Since 1990, few methods of

source separation have been proposed in the case of convolutive mixtures (i.e the channel e�ect can be

considered as a linear �lter). These methods were generally based on high order statistics [8, 16, 12, 3].

Recently, some subspace methods have been explored to solve the blind identi�cation or separa-

tion of sources problem [4, 5, 14, ?, 6]. The advantage of these methods is: by using only second

order statistics (but more sensors than sources), we can separate the sources (with some assumptions

concerning the channel �lters) or identify the convolutive mixture up to an instantaneous mixture.

The subspace methods are very elegant methods from theoretical point of view, but in general case,

the convergence of these algorithms are relatively slow due to the minimization of large size matrices.

In [14], we proposed a subspace method for a convolutive mixture model based on LMS algorithm.

Unfortunately, that algorithm was very slow due to the large size of the matrices and the use of LMS

method. That algorithm requires mores than 7000 iterations to converge. In this paper we propose

another criterion also based on subspace approach but this criterion is minimized using conjugate gra-

dient algorithm [2]. The convergence of the proposed method is relatively fast, and may be achieved

in less than 1000 iterations.

This new algorithm can be decomposed in two steps: in the �rst step, by only using second-order

statistics, we reduce the convolutive mixture problem to an instantaneous mixture; then in the second

step, we must only separate sources consisting of a simple instantaneous mixture (typically, most of

the instantaneous mixture algorithms are based on fourth-order statistics).
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2 Channel model

Let us consider p unknown and statistical independent sources S(n) observed by using q sensors Y (n),

with q > p.

G(.)
S(n) Y(n) X(n)

Separation algorithm

Channel

Sub-space method
(second-order statistics)

W

Z(n)
(px1)(qx1)

(pxp)
(px1)(px1)

H(.)

Figure 1: General structure.

Denote the channel e�ect by a q � p polynomial matrix H(z) = (hij(z)), entries of which hij(z)

are �nite impulse response (FIR) �lters, and by M the highest degree of the �lters hij(z). In the

sequel, M will be called the degree of the �lter matrix H(z). Denote by H(i) the real q � p matrix

corresponding to the �lter matrix H(z) at time i:

H(z) = (hij(z)) =
MX
i=0

H(i)z�i: (1)

The mixture vector q � 1, at time n, is given by:

Y (n) =
MX
i=0

H(i)S(n� i); (2)

where S(n� i) is the p� 1 source vector at the time (n� i). Let us use the following notations:

YN (n) =

0
B@

Y (n)
...

Y (n�N)

1
CA ; (3)

SM+N(n) =

0
B@

S(n)
...

S(n�M �N)

1
CA : (4)

By using N > q observations of the mixture vector, we can formulate the model (2) in another form:

YN (n) = TN (H)SM+N(n); (5)

where TN (H) is the Sylvester matrix corresponding to H(z). The Sylvester matrix

q(N + 1)� p(M +N + 1) is given by [9]:

TN (H) =

2
66664

H(0) H(1) H(2) : : : H(M) 0 0 : : : 0

0 H(0) H(1) : : : H(M � 1) H(M) 0 : : : 0
...

...

0 : : : : : : 0 H(0) H(1) : : : H(M)

3
77775
: (6)
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3 Criterion and constraint

It is obvious from (4) and (5), that the source separation will be achieved by estimating SM+N (n). By

consequence the separation can be done by estimating a (M +N + 1)p� q(N + 1) left inverse matrix

G of the Sylvester matrix, which exists if the matrix TN (H) has a full rank.

It was proved in [1] that the rank of TN (H) is given by:

Rank TN (H) = p(N + 1) +

pX
i=1

Mi; (7)

whereMi is the degree of the ith column of H(z). The degree of a column is de�ned as the highest

degree of the �lters in this column. It is easy to prove using (7) that the Sylvester matrix has a full

rank and it is left invertible if each column of the polynomial matrix H(z) has the same degree and

N > Mp.

Suppose that G is the left inverse of TN (H) then we can remark:

GYN (n) = SM+N(n);

GYN(n + 1) = SM+N(n+ 1): (8)

Let us denote by Gi the ith block row1 of G. By using (8), we can easily demonstrate that:

GY(n) = (G1; G2; : : : ; G(M+N+1))

0
BBBBBBBBB@

YN (n) 0 : : : 0

�YN (n+ 1) YN (n) 0 : : :

0 �YN (n+ 1) : : :
...

... : : : : : :
...

0 : : : �YN (n + 1) YN (n)

0 : : : 0 �YN (n+ 1)

1
CCCCCCCCCA

;

= 0:

where G = (G1; G2; : : : ; G(M+N+1)) is a p � q(N + 1)(M + N + 1) matrix. From the previous

equation (9), a simpler criterion can be derived:

min
G

G

n1X
n=n0

Y(n)YT (n)GT : (9)

The sum operation is added to improve the performances of the experimental results. In addition the

choice of number n0 and n1 depends on the data and it has some inuence on the convergence speed

of the algorithm (in our experimental study, we used 20 < n1 � n0 < 50).

It was proved for similar criterion [10, ?] that the minimization of this kind of cost function (9)

does not give the Moore-Penrose generalized inverse (pseudoinverse) of the Sylvester matrix TN (H),

but a (M +N + 1)p� q(N + 1) matrix G which satis�es that GTN (H) is a block diagonal matrix:

1Gi is p � q(N + 1) matrix and G = (GT1 ; : : : ;G
T

M+N+1)
T .
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GTN (H) =

0
BBBB@

A 0 : : : : : : 0

0 A 0 : : : 0

0
. . .

. . .
. . . 0

0 0 : : : 0 A

1
CCCCA
; (10)

where A is an arbitrary p� p matrix.

It is clear that as the algorithm converges, the estimated sources are instantaneous mixtures

(according to a matrix A) of actual sources: in fact using (5) and (10), we �nd that:

GYN (n) =

0
B@

AS(n)
...

AS(n�M �N)

1
CA : (11)

To avoid the spurious solution G = 0 and force the matrix A to be an invertible matrix2, we

propose the minimization subject to the constraint:

G1RY (n)G
T
1 = Ip; (12)

where G1 is the �rst block row (p�q(N+1)) ofG, RY (n) = EYN (n)YN(n)
T is the covariance matrix

of YN (n) and Ip is a (p� p) identity matrix. If the above constraint is veri�ed then:

G1RY (n)G
T
1 = ARS(n)A

T = Ip; (13)

where RS(n) = ES(n)S(n)T is the source covariance matrix. RS(n) is a full rank diagonal matrix

thanks to the statistical independence of the p sources from each other. As consequence of (13), matrix

A becomes invertible.

Experimentally, the cost function (9) is minimized using a conjugate gradient algorithm [2]. The

algorithm proposed by Chen et al. in [2] can minimize a cost function f(V ) with respect to a vector

(V ). From theoretical point of view, this algorithm can converge in a number of iterations which is

less than the dimension of V . In our case, the cost function (9) must be minimized with respect to

a p � q(N + 1)(M +N + 1) matrix G. As consequence, the cost function (9) should be decomposed

into p cost functions, each one only depends on one line of G. Afterwards, we can easily apply the

conjugate gradient algorithm to minimize our criterion3.

Finally, the constraint (12) can be satis�ed easily by a simple Cholesky decomposition, than G1

can be normalized byG�

1 = (G1RY (n)G
T
1 )

�1=2G1 at each iteration. In addition, the source separation

of the instantaneous residual mixture is achieved according to the method proposed in [15].

4 Experimental results

Even if the convergence of this algorithm is attained in small number of iterations (in general case, less

than 1000 iterations are needed), the convergence time is relatively important due to the minimization

of large size matrices. For that reason, we present in this section some experimental results in the case

of two sources. Actually, we are looking to improve the algorithm convergence, so we can separate

more than two sources with reasonable time.

2So the separation of the residual instantaneous mixture becomes possible using any algorithm for the separation of

instantaneous mixture
3Because the limitation of the page number, we can not give more details in this article.
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The experimental study shows that for two stationary sources, the convergence of the subspace

criterion (9) is attained with about 800 iterations (see �gure 2).

200 400 600 800
iter

20

40

60

80

crit

Figure 2: The convergence of the sub-space criterion

In that experiment, four sensors q = 4 and two stationary sources p = 2 were used:

� The �rst source is an independent identically distributed (iid) signal with an uniform probability

density function (pdf).

� The second signal is output of an AM �lter h(z) = 1 + :5z�1 � :4z�2 + :2z�3, who has an iid

with uniform pdf signal as input.

The channel e�ect H(z) is considered as a FIR �lter of fourth degree (M = 4):

H(z) =

0
BBB@

�1� 2z�1 + z
�2 + 1:5z�3 + z

�4
z
�1 + z

�2 + 2z�3 + 1:5z�4

2� 4z�1 + 4z�2 1� 2z�1 + 1:5z�2 + z
�3 + 0:5z�4

�1� z
�1 + 0:4z�2 + 3z�3 � z

�4 3� 2z�2 + 2z�3 + z
�4

�2 + z
�2 + 4z�3 � 1:5z�4 1 + 2z�1 � 2:5z�2 � z

�3 + 0:4z�4

1
CCCA (14)

We can see in �gure 3 that the objective of �rst step of the algorithm was achieved, with G:TN(H)

being a block diagonal matrix (where A is a 2� 2 matrix, see (10)).
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Figure 3: Performance results: G:TN(H) should be a block diagonal matrix.

When the minimization of the cost function (9) is achieved, the two (p = 2) output signals zi(n)

are given by Z(n) = (z1(n); z2(n))
T = AS(n). The performance of this instantaneous residual mixture

separation [15] is shown in �gure 4.
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Figure 4: Performances of the instantaneous residual mixture separation.

Finally, to demonstrate the behavior of our algorithm and its performances, we plot the di�erent

signals in their own plane, as in �gure 5.
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(a) Sources signals s1 � s2 (b) Mixing signals y1 � y2
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(c) First step of the sub-space algorithm z1 � z2 (d) Estimated signals x1 � x2

Figure 5: Experimental results.

In �gure 5, we remark that the sources s1(n) and s2(n) are statistically independent as are esti-

mated signals x1(n) and x2(n) (for more information concerning the relationship between the distri-

bution of signals and their statistical relationships with each other, see [17]). In addition, from �gure

5 (c) we can say that these signals may be obtained by mixing independent signals with help of an

instantaneous mixtures. Finally, we can see the mixing signals in the �gure 5 (b).

5 Conclusion

In this paper, we present a new sub-space algorithm to solve the problem of blind separation of sources

for convolutive mixture. This algorithm is based on the minimization, using the conjugate gradient

algorithm, of a sub-space criterion based on second-order statistics.

The minimization of that criterion can not achieve the separation, but it can transfer the convolu-

tive mixture into an instantaneous mixture. In addition, the separation of the residual instantaneous

mixture can be done using any instantaneous mixture algorithm, typically based on fourth-order

statistics. By consequence, we �nd that most of the channel parameters can be estimated using only

second-order statistics. The actual version of the algorithm is relatively fast. In general case the

convergence of the sub-space criterion is attained in less than 1000 iterations.

We succeeded in separating two stationary sources, with about -22 dB of residual crosstalk. Cur-

rently, we are trying to separate more than two stationary or non-stationary sources (for example:

speech signals).
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